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Abstract 

Multi-image based modeling has proven to be effective providing solutions for surveying and documenting cultural heritage, 
and in particular architectural heritage. In addition to the issues related with instruments and captation strategy, the 
operativity of these projects is supported by three bases: Computer Vision (C.V.) algorithms, analytical close-range 
photogrammetry, and theory of errors. In this work we propose an approach that examines the importance of the first, from 
two points of view. On one hand, we present a brief overview of its intervention in the different processing stages, both in 
photomodeling as in photograms stitching projects, thus reviewing the fundaments regarding the two classic branches of 
architectural photogrammetry. On the other, we present a review of the operational strategy with these algorithms, through 
a case study that evaluates the results of two software applications, advancing some methodological improvements.  
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1. Introduction 

Multi-image based techniques have meant a 
considerable improvement regarding to surveying 
and documenting architectural heritage. 
Especially in overlapping sets of photos, because 
quite automated processes have been developed 
in the recent years, which include C. V. algorithms, 
close range photogrammetry, and optimization of 
results by adjustment of errors.  

With these three supports, a good number of 
software applications allow to solve the formation 
of 3D models of buildings and objects, as well as 
the automatic stitching of photos for the 
implementation of panoramas, “synths” and 
virtual visits.  

On the other hand, we must add to that other 
“parameters that affect the quality of 
photogrammetric results including used software, 
number of photos, and control points” (Elkhrachy, 
2020), and particularly, the efficiency in collecting 
information that is achieved today with the multi-
sensor techniques, that include image and range 
based captures. So that, thanks to the combination 
of hybrid captures and CV-based software, has 
been possible to generalize the use of multi-image  

 
based techniques, and achieve a reliable range of 
results for the analysis and documentation of 
cultural heritage, and in particular architectural 
heritage. Among the three basic supports, it is 
surely the operativity with the first of them, the 
one that results more relevant, since it largely 
conditions the effectiveness of the others. As 
Debevec, Taylor and Malik (1996) affirm: “these 
systems are only as strong as the underlying stereo 
algorithms”.  
In the present work we propose, on the one hand, 
to review the intervention of this automatic 
technology in the processing stages, and on the 
other, to analyze the results in a specific Case 
Study, in terms of reliability, since its operational 
strategy is one of the keys to achieving optimal 
results 

2.  Intervention levels of these operators 

Since its inception in the 1970s, a wide variety 
of applications use Computer Vision techniques in 
automatic Stereo/Multi-vision projects through 
passive and other types of cameras, to extract 3D 
information from the environment, even with real-
time data processing. (Szeliski, 2011). 
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Fig. 1: Example of keypoints detection with SIFT algorithm. 
Top: “The 4966 keypoints detected by SIFT in a 1280 × 960 

pixel image. a) Location of all detected keypoints. b) 
Differently sized and oriented matrices associated to the 

area-based search (only 10% are shown to avoid clutter)”. 
Bottom: “Keypoint matches between the two images shown 
in (a) and (b), using the threshold τ = 0,6 in the correlation. 
The dots represent the location of keypoints (only 25% of 

the 1527 matches are shown)” (Lindequist, 2010) 

In the first decade of the 21st century, some 
semiautomatic close-range photogrammetic 
applications were launched, that handled the 
reconstruction of a model using coded or backlit 
targets to identify orientation points. However, the 
“substantially increasing level of automation in the 
photogrammetric process (has been) due to the 
considerable algorithms improvement from the 
Computer Vision community”, that brought a 
radical change by allowing to work with extense 
sets of neighbouring photos. (Skarlatos & 
Kiparissi, 2012). These operators intervene at 
three levels: feature detection in images, 
correlation between the photopair points, and 
filtering processes, as we will explain below. 
Among the former, Scale Invariant Feature 
Transform (SIFT), which was the first to be 
published in 2004, and Speeded Up Robust 
Features (SURF), are noteworthy for feature 
detection and matching. Both algorithms operate 
in two stages: in the first, through the examination 
of the grey-scale channel of the entire image, 
looking for highly contrasted pixels with respect to 
the neighbours, through an area-based search, and 
according to a Gaussian-type function. The “key 
points” thus obtained are defined by their pixel 
coordinates, and by a “descriptor”, a 64 or 128 
dimension vector, that represents a gradient 
histogram of the features of the neighbouring 
pixels. In this way, the results are quite robust to 
changes in the nearby photos of the sequence. 

Fig. 2.a: Two-dimensional matching algorithms overview: a 
photo-modeling software application. Blue lines show 

acceptable matches between photos 0011 and 0022 (up and 
down in the thumbnails on the right). In general, the highest 

proportion occurs among pairs of neighbouring photos 
(Agisoft LLC, 2015) 

 

Fig. 2.b: Control points: the same concept in panorama-
stitching applications. After a process called “Fine-Tune”, to 
accurately “estimate the corresponding (position of a) point 

up to one tenth of a pixel”, for each pair detected the 
correlation coefficient is shown (in the lower part of the 

screeen). “Typically values over 0.8 indicate that the image 
areas around each point of the pair are very similar (an 80% 

correlation)” (Hugin, 2012) 

The next stage is to resolve the 
correspondence between the keypoints detected 
in pairs of overlapped photos. For this purpose, 
SIFT uses the “nearest neighbour method”, i.e., the 
point in the second image located at the minimum 
distance in pixel coordinates,  improving the 
search by an additional comparison with the 
distance of the second nearest neighbouring point. 
That is, if the point in the initial image is di, and the 
closest in the target image are d´j and d´k , the i-j 
match is accepted if the threshold  

𝜏 >
‖𝑑𝑖 − 𝑑 𝑗́‖

‖𝑑𝑖 − 𝑑´𝑘‖
 

is smaller than a certain value, which ensures 
discarding a high percentage of false matches (see 
Figs. 1, 2.a and 2.b). 

Software applications allow different 
adjustments in the parameters of these 
technologies. The intensity of the “Smart Feature 
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Detection” (SFD) controls the quantity and 
reliability of the resulting “keypoints”, by means of 
the level of subsampling, and by the characteristics 
of the search matrices. The reliability of the two-
dimensional matching process is usually 
controlled by two settings. On one hand, by the 
preselection of pairs, to avoid analyzing those with 
an insufficient overlap. And likewise, by means of 
other area-based algorithms, such as the 
“Correlation coefficient”, the “Quadratic 
matching”, or the “Least Squares Matching” (LSM), 
among others, that use descriptor comparison, 
with the aim of discard false correspondences. (Re 
et al., 2014). Similar matching algorithms allow 
filtering the orientation process, and solving the 
linear correlation in the metric reconstruction 
phase, as we will see below. 

The matching results must be filtered 
according to “strategies for outlier rejection”, 
based on robust adjustment algorithms, such as 
RANSAC (Random Sample Consensus) or MAPSAC 
(Previtali et al., 2011). This way, the inevitable 
errors caused by excessive disparity between 
shots, shadows, glare, or other causes, are filtered 
by checking the alignment between the key points 
in the photopair, by means of linear regression 
techniques, and discarding those that exceed a 
certain threshold that, therefore, reveal false 
matches (filtering-1 stage in Fig. 3). 

3.  General overview of the C.V. algorithms 
performance in SfM projects 

3.1. Projective Reconstruction phase 

In a multi-image based project, aimed to create 
a 3D model or a panoramic photography, firstly the 
projective-based reconstruction of the sequence 
must be resolved, accurately determining the 
location and rotation of the cameras (the 
“Structure from Motion” phase, aka SfM), followed 
by a metric reconstruction phase, in order to 
obtain a dense point cloud of the model, or else to 
stitch the images together to form a panorama or a 
“synth”, according to the type of project involved. 

Computer Vision based techniques are so versatile, 
that they result decisive in both types of projects, 
and also in both phases, leading to a general 
workflow like the one shown in the following 
diagram, which we will briefly discuss below. (see 
Fig. 3). 

The projective reconstruction phase begins 
with an initial reconstruction, known as “relative 
orientation”, in which “the two first images of the 
sequence are used to determine a reference frame” 
(Pollefeys et al., 2000). The spatial position of the 
two first cameras can be calculated by three main 
approaches, used according to the project 
characteristics, developed from the 
photogrammetric theory of photo pairs, which due 
to their importance we will briefly comment. 

One of these principles is to consider the 
“coplanarity condition” between the two vectors 
associated with the “nuclear plane” of a point M, in 
the Terrero-Hauck configuration, and the 
translation vector between the two cameras O-O´, 
so that their mixed product results null. A classic 
focusing of this formulation is based on the 
development of the corresponding null 
determinant, involving the internal parameters of 
the images through the “collinearity condition” or 
Direct Linear Transformation (DLT). As a 
consequence, this "image condition" between a 3D 
object point and its two image vectors, can be 
written in projective coordinates: 
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with (K) the “calibration matrix” of the cameras, 
and (R T) the product of matrices that represents 
the extrinsic parameters of rotation and 
translation between the exterior system and the 
image system, also known as the “projection 
matrix”. (Förstner, 2004)  
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Fig. 3: General chart of the C.V. algorithms involved in the processing stages of a multi-view based project 

 
Another useful development of the coplanarity 

condition starts from expressing this mixed 
product according to the coordinate system 
associated with the first camera O: 
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with To the translation vector between images 

O and O´.  
It is verified that this relationship leads to a 

simple expression that sums up all the 
transformations involved: 
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with (E) called the “essential matrix”, thus 

associated with the image coordinates, and with 
the chance to involve the calibration parameters of 
the camera. 

It is also possible to solve a photo pair from the 
Terrero-Hauck nuclear beam of planes, with a 
strictly projective approach. If we consider the two 
epipolar lines associated with a point M, lying in a 
nuclear plane of this beam. The expression of their 
projectivity will be: 

r A rME ME =   ( )
 

From this, transforming the tangential 
coordinates of the epipolar line r´ME, this relation 
can be formulated: 
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that corresponds to  a bilinear expression of the 
homography between epipolar series of 
corresponding points in each image, therefore in 
pixel coordinates. The matrix (F) is known as the 
“fundamental matrix” of the epipolarity, and 
“describes the projective relation between two 
uncalibrated views”. (Rodehorst et al., 2008). It 
yelds an obvious practical utility, since its 
calculation can be carried out from image 
coordinates in both images. 

As we can see, these three main derivations to 
analytically solve a pair of photos, are based on the 
control points previously obtained with the C.V. 
algorithms for SFD and two-dimensional 
matching. With the "relative pose" of the first pair 
of photos resolved, the workflow continues, in 
short, adding cameras until the "multi-photo 
orientation of isolated beams" stage is complete. 
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Fig. 4: Facade of the Old University of Valencia in the Patriarch Square, captured with cameras on tripod. Top: “Sparse Cloud”, 
obtained with SFD and area-based matching algorithms. Bottom: Dense point cloud obtained with a MVS algorithm. 

(PhotoModeler Technologies, 2017) 

 
The three previous orientation foundations 

can also intervene in this complex process, 
according to different methodologies. Successive 
results are filtered by different methods, such as 
the "epipolar condition", which allows the use of 
linear correlation operators (now usually under a 
"trifocal tensor" configuration), robust correction 
technologies (such as RANSAC), removing points 
with greatest residual before recalculating, or 
other like the Singular Value Decomposition 
(SVD), which in the cases of E and F matrices, helps 
to "clean up" its two-rank geometric condition 
(filtering-2 stage in Fig. 3). (Barazzetti et al., 2011) 

Complementarily a least squares optimization 
calculation can be executed, intended to minimize 
the errors of the involved variables, usually 
operating with the residuals of the image 
coordinates obtained by alternating spatial 
intersections and resections (retroprojection 
errors). The least squares fitting of all the beams in 
block calculation, known as “bundle adjustment”, 
yelds the optimization of the photograms 

positions, and leave the SfM model ready for 
exploitation of results. This overall redistribution 
of errors is important because “the estimated 
parameters are prone to inaccuracies caused by 
wrong correspondences, critical camera 
configurations (e.g. small baselines), 
measurement noise, or calibration errors” 
(Hänsch et al., 2016). Apart from the image 
coordinates, the internal orientation parameters 
(optical and radiometric), are normally also 
involved, implementing a “project calibration” for 
better results, in a process then known as “hybrid 
block adjustment”. (Dorffner & Forkert, 1998).  

The projective reconstruction phase provides 
thus a model of oriented / calibrated cameras, with 
proven quality, as well as a set of 3D points 
calculated at the same time, usually called “sparse 
point cloud” or “low density point cloud”.  

3.2. Metric Reconstruction phase 

On the other hand, C.V. based matching 
algorithms are no less important in the metric 

 
 

 



(2021), n. 2 J. L. Cabanes, C. Bonafé 

 130  

reconstruction phase, in both types of projects 
similarly. In photo-modeling ones, they first give 
rise to the “deep recovery” or “depth map” of the 
sequence, “…generated by estimating 3D 
coordinates for additional matches between 
images”. To this end, two types of calculations are 
used, depending on the characteristics of the 
project. The first one was the “Pairwise Matching” 
method, registering and merging the partial 
results of a linear matching, by means of the above 
mentioned area-based algorithms, but now with 
less uncertainty, due to the restriction of the “one 
dimensional correlation”, derived from the 
epipolar condition in a photopair. (Kraus, 1993).  

The depth map can also be obtained by Semi-
global Matching / Multi-View Stereo technologies 
(SGM / MVS), which have proven their satisfactory 
operativity specially in UAV-based projects, in 
which “the processing pipeline can be hindered 
due to the limited quality of the data”. (Haala & 
Rothermel, 2012). The basic idea behind is “to use 
more than two images within the matching 
process” (photo subsets), and “combine the 
pairwise results afterwards to create the final 
solution”. (Bethmann & Luhmann, 2015).  (see Fig. 
4). 

A “dense” or “stereo” cloud” is then achieved, 
characterized by a heterogeneous spatial 
distribution of the points, and a variable quantity 
of clusters of outliers. To improve its quality, a pre-
DSM filtering of the cloud is required, with 
techniques such as elimination of redundant 
points and outliers, among others (filtering-3 stage 
in Fig. 3). (Altunas et al., 2019).  

If the aim is to document or visualise the 
model, the 3D point cloud is normally triangulated 
to achieve a phototextured network, called Dense 
Surface Model (DSM). For this purpose, firstly 
algorithms such as Delaunay or Poisson perform a 
spatial triangulation, and then, others solve the 
texture projection on the mesh, normally by means 
of its previous parameterization in portions, to be 
re-projected from the oriented images, and 
assigning them a color according to criteria such as 
the relative frontality with respect to the source 
images (Visual Computing Laboratory, 2016). The 
triangulation must also be cleaned with post-DSM 
filtering to eliminate errors such as crossed or 
non-manifold faces, among others. 

 

 
1 This is due to the projective concept of conical projection as 
a complete spherical radiation.  

Fig.5: Facade of the Old University of Valencia in the 
Patriarch Square. Up: initial images with divergent 

directions. Middle: rigid-solid transformation over planar 
mapping. The photos result aligned to ensure that the 
overlapped content coincides with no deformation (no 
stretching or distortion). Below: general homography 
transformation over planar mapping. The images are 

linearily deformed so that the two laterals result aligned 
with the central, to recover the base-plane in the model 

Instead, in a photogram-transformation 
project, once solved the stages: i) spatial location 
and filtering of the control points, through C.V. 
algorithms; ii) orientation of the images, by means 
of any of the three commented approaches; and 
iii), filtering and global bundle or hybrid block 
adjustment, the projective transformation that 
best adapts to camera movement, can be 
automatically deduced from the previous SfM 
recovery. (Microsoft Research, 2015).  

In a project for the formation of a panoramic 
image, the shooting sequence may correspond to a 
planar or a rotation motion. In the first case, in 
theory, the most restrictive rigid-solid 
homography transformation, usually works well 
to stitch the images on a homothetic plane with 
respect to the model basic plane.  

In the second, the shots correspond to the 
same theoretical gnomic projection, so that a rigid-
solid homography allows all the depth planes of 
the model to be correctly linked with no “parallax” 
error.1 (Gao et al., 2011). However, the difficulty in 
achieving parallelism between all the shots in a 
planar motion, and the slightly divergent location 

 

 . 
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of the optical center of the camera lens, with 
respect to the device´s center of rotation, leads to 
a general projective transformation being the most 
suitable for achieving a stitching surface that 
matches well with the shooting sequence. (Xiang et 
al, 2016) 

Fig. 6: Basic elements of a “Synth” visualisation. Up: low-
quality point cloud obtained with C.V. algorithms. Down: 

overlay of isolated photos (in this case from a Spin motion). 
On the bottom of both images: navigation bar with the usual 

controls. (Microsoft Research, 2014) 

In any case, the result of these projective 
transformations, automatically determined by the 
specific software applications from C.V. 
algorithms, allows identifying the basic surface on 
which to map the images, involving therefore a 
“metric reconstruction” of the scene.  

After images stitching, two composing formats 
can be adopted: (i) a smooth transition between 
isolated photos, optimizing the number of pixels 
required at each moment, which results in a fairly 
continuous trip with a surprisingly realistic effect 
(a "Synth"); or (ii) a seamless composition of all 
the images on a plane, cylinder or sphere.  

The projection modality (previous to its final 
planar view), is also involved in the metric 
reconstruction of the rotation motion, as “there is 
no single, unique projection for representing 
sections of the sphere on the globe. Instead, all 
projections have various attributes and 
limitations” (Hugin, 2012). (Figs. 5 and 6) 

4.  Case Study 

4.1. Location, equipment and methodology 

As a practical application, we are going to 
analyze a photo-modeling project of the Buñol´s 
Castle Tower (Spain) located at the north entrance, 
and accessible from the outside through a stone 
bridge.  

For data capture, the following material was 
used: 

- Ground equipment: Nikon 7100d semi-
professional camera with tripod and self-timer, 
avoiding blurred photos. 

- Aerial equipment: Drone F550 with 
modifications made by ourselves, such as the 
addition of an autopilot system, and an automatic 
shooting system (with custom 3D printed 
support). A Xiamomi Yi camera (type Go Pro) was 
used. 

For the processing of the project, a terrestrial 
photogrammetry + UAV customized methodology 
was used. On each side of the Tower (exterior and 
interior), a base model has been provided by the 
cameras on tripod. The aerial sub-model, with 
lower quality shots, was then registered also on 
each side.  

The control of the reliability of each base model 
was performed with a methodology like the one 
we expose here (see section 4.2), and finally the 
two faces of the Tower, were registered. 

4.2. Analysis of the operativity with C.V. algorithms 

For our analysis of the operativity with C.V. 
algorithms, we have processed only the photos 
corresponding to the interior façade of the Tower, 
taken with the Nikon D-7100, for being of higher 
quality than those obtained from the drone.  

These are 80 images with a dimension of 3872 
x 2592 pixel, taken with minimum focal (18 mm), 
minimum aperture (f / 22), and self-timer, thus 
ensuring a good radiometric quality, level of detail, 
and uniform dynamic range.  

We have processed them with PhotoModeler 
v.1.2.0. 2127 (aka PM), and PhotoScan v. 
2017.1.1.2199 (aka PS) software products. (see 
figs. 7 and 8) 
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Fig.7: North Tower of Buñol´s Castle. Top: sequence of terrestrial and aerial shots describing respectively arcs and spirals. We 
have checked the effectiveness of these sequences, with nadiral and azimuthal angles of different signs, so that the 

orientations of the model are registered from all possible positions with enough redundancy, in order to optimize the SFD and 
Matching algorithms.  (Cabanes & Bonafé, 2019). Bottom: interior views of the filtered 3D point cloud of the full model 

  
 

 
 

Fig. 8: North Tower of Buñol´s Castle. Yop: orthophotos exterior / interior from the complete DSM. Bottom: automatic level 
curves as polylines, obtained from the dense point cloud (edited with Cloud Compare, 2019) 
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In accordance with the stages exposed in the 
general overview of multi-image based projects, 
we present four tables below. In Tables 1 and 2 we 
have evaluated the operativity in the projective 
reconstruction phase, with both software 
applications, establishing, in general, two levels of 
intensity. 

 
In Table 1 we have tested two types of 

downsamplig for Smart Feature Detection (SFD), 
which is the only setting available in both 
applications. To work with comparable values we 
have established the categories: 

- SFD Medium, which corresponds to 
approximately 85% of area reduction (“Very High” 
level in PM, and “Low” level in PS). 

- SFD High, less homogeneous, since it 
corresponds to the “Extra High” level in PM (75%) 
and “High” level in PS (55%). 

 
In Table 2 we test the Matching algorithms, and 

we treat two categories: 
- Match Medium, with GOC = 10 and MQT = 0.5, 

which are the PM default values. And pair 
preselection “Generic” in PS. 

- Match High, with GOC = 15 and MQT = 0.4, 
with a higher level of demand only in PM, since PS 
does not allow resetting the default option. 

Good Overlap Count (GOC) values the overlap 
between two photos to apply the matching 

algorithm, while Match Quality Threshold (MQT) 
refers to the number of accepted tracks. 

 
In Table 3 we show a summary of the main 

parameters of the SfM models obtained, combining 
options from the previous tables. We include the 
most representative values of the sparse 
reconstruction: number of 3D points, maximum 
retroprojection residual (υmax) and its disparity, as 
well as the redundancy in the depth recovery, and 
the proportion of weak points. The first 
orientation obtained in each case, including a 
cameras field calibration, (“Orientation” rows in 
the Table), has been improved through a 
sequential process of removing the points with 
greatest residuals, and then running a bundle 
adjustment of all variables, until achieving a new 
residual in the worst point that does not exceed 
the initial one. Thus, the filtered cameras model 
(“R + B.A.” rows in the Table) obeys to a more 
weighted distribution of the retroprojection error. 

From all this we deduce that there are three 
characteristics to highlight, that allow us to 
propose a methodological improvement of project 
adjustments, relative to these technologies. Firstly, 
Table 1 shows an increase in the number of key 
points detected with a lower level of 
downsampling. Despite this, if we compare the two 
levels of matching in Table 2 with PM, we see that 
a higher quality requirement causes a significant 
decrease in the tracks used, in the order of 50%, 
which can lead to a problematic depth map, if it 
turns out below a certain threshold. 

Secondly, after considering the filtered results 
of the SFM reconstruction, we see that it is 
necessary to previouly asses whether it is 
appropiate to readjust the SFD + Matching 
algorithms, or even reconsider the selection 
ofphotos. In our case, we have found a problematic 
SFD / Matching Medium configuration in PM, 
which, despite having an acceptable “Matching 

Tab. 1: SFD levels analysis. 

 Smart Feature Detection 
Key points detected /used per 
photo, avg. 

SFD Downsampling 
level 

Medium 
(85%) 

High 
(75 % PM / 55% 
PS) 

PhotoModeler 
(PM) 

25.000 / 14.500 45.000 / 25.000 

PhotoScan 
(PS) 

20.500 / - 35.000 / - 

Tab. 2: Matching levels analysis. 

 Total photopairs 
 

Matches detected / used  per photo (avg) / 
max 

SFD 
Match 
Match 

Medium 
Medium 

High 

High 
Medium 

High 

Medium 
Medium 

High 

High 
Medium 

High 
PhotoModeler 

(PM) 
1.319 
1.319 

2.290 
2.290 

850 / 800 / 1.000 
350 / 300 / 500 

1.100 / 950 / 1.500 
475 / 475 /1.500 

PhotoScan 
(PS) 

-- -- 4.885 / 280 / 4.000 
-- / -- / -- 

41.130 / 3.600 / 4.000 
-- / -- / -- 
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used (avg.)” of 800/1000 in Table 2, only orients 
76/80 cameras. Therefore, the combination of 
medium level of subsampling + not very 
demanding matching, fails to locate enough points 
of orientation in the depth map, due to an 
excessive disparity, and causes 4 cameras 
orientation failure, and, in addition, a minimum 
redundancy level of 3 "Rays per 3D point (avg.) 2 ” 
in the others (Table 3). 

Third, we see that a project workflow oriented 
to a robust SfM configuration, to ensure the metric 
quality of the 3D model, must essentially meet: (i) 
optimal values for υmax and for its dispersion, as 
well as an acceptable redundancy in the number of 
“Rays per 3D point (avg)”3; and (ii) the value of 
υmax must correspond, at any case, to the average 
photoscale, and to an allowable tolerance in the 3D 
model. In general, it is observed that the results 
shown in Table 3 present lower errors, with PM 
and a complete workflow (SFD / Matching / 
Orientation + Filtering), although a more 
aggressive filtering methodology of the Sparse 
Cloud in PS can lead to an average equivalent 
results. In all cases, the configuration SFD Medium 
/ Matching Medium / Orientation First, produces 
results that are clearly worse compared to the 
others 

 
2 The SFD default option in PM produces an even bigger 
subsampling, so the expected result would be even more 
unfavourable. 

As for the algorithms involved in the metric 
reconstruction, both applications share the SGM / 
MVS technology, and we have also defined two 
categories: 

- SGM / MVS Medium, adjusting: (i) in PM: 
Downsampling level 1 (a level 0 implies full image 
resolution), and Point Spacing 2 (standard 
sampling rate), which are the default options; (ii) 
in PS: Quality “Low” (subsampling equivalent to 
that selected for the SFD), and Depth Filtering 
“Moderate” (level 3/4) regarding the sampling 
range. 

- SGM / MVS High, adjusting: (i) in PM: 
Downsampling 0, and Point Spacing 1 (maximum 
density); (ii) in PS: Quality “High” (subsampling 
equivalent to that selected for the SFD), and Depth 
Filtering “Aggressive” (level 1/4), also maximum 
density. This yelds an adequate level for models 
that require a detailed reconstruction, as 
recommended by both Manuals. 

The results of the tests that we collect in Table 
4, in general, confirm the greater performance 
achieved with low levels of subsampling in the 
images, high ranges of “point spacing” and filtering 
(SFD High / Matching Medium / Orientation + 
Filtering). But they must be supported on a robust 

3 In general υmax <2 and its dispersion <0.5 (pixel) are 
supported, as well as a minimum of 4 "Rays per 3D Point". 

Tab. 3: Main Orientation Parameters 

 Quantity 
Nº of 3D points 

Residuals 
υmax / RMS υi  / Max RMS υi  (pixels) 

Redundancy 
Rays per 3D point (avg) / 2D 

Points per photo / 2D Points in 
two photos only 

SFD 
Match 

Orientation 
Filtering-2 

 
Match 

Orientation 
Filtering-2 

 

Medium 
Medium 

First 
R +B.A. 

 
High 
First 

R+B.A. 

High 
High 
First 

R +B.A. 
 

High 
First 

R+B.A. 

Medium 
Medium 

First 
R +B.A. 

 
High 
First 

R+B.A 

High 
High 
First 

R +B.A. 
 

High 
First 

R+B.A. 

Medium 
Medium 

First 
R +B.A. 

 
High 
First 

R+B.A 

High 
High 
First 

R +B.A. 
 

High 
First 

R+B.A. 

PhotoModeler 
(PM) 

37.678 
36.139 

 
58.006 

40.158(*) 

61.185 
59.893 

 
64.496 
63.452 

2,15 / 0,65 / 2,29 
2,05/ 0,79 / 2,06 

 
2,10 / 0,75 / 1,98 
1,99 / 0,51 / 1,93 

2,10 / 0,75 / 2,09 
2,00 / 0,57 / 1,87 

 
2,10 / 0,74 / 2,07 
1,96 / 0,56 / 1,87 

5 / 2.495 / 39 
5 / 2.212 / 40 

 
5 / 3.718 / 39 
3 / 1.643 / 54 

5 / 3.583 / 42 
5 / 3.406 / 42 

 
5 / 4.162 / 40 
5 / 3.967 / 40 

 
PhotoScan 

(PS) 
11.208 
10.527 

22.555 
18.187 

6,54  / 2,48 / - 
5,58 / 2,27 / - 

6,60 / 1,22 / - 
5.44 / 1.06 / - 

5 / 696 / -- 
4 / 595 / -- 

9 / 2.650 

Notes (*): Only 76 / 80 cameras oriented 
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previous configuration of the cameras model, as 
we have previously commented. (fig. 9) 

In our surveying project, we have combined 
exigent SFD + Matching configurations, along with 
an adequate level of filtering of the Sparse Cloud 
on each side of the Tower, so that when registering 
the aerial cameras, and filtering / optimizing the 
joint model, the errors found have been 
acceptable. 

Conclusions 

So far, we have briefly discussed an approach 
of the C. V. algorithms intervention and operativity 
in Multi-Image based projects for architectural 
documentation that allows some conclusions to be 
drawn in both aspects. 

As regards the first, we have seen how these 
operators, plus the geometric base provided by 
projective relations, as well as the optimizing of 
errors techniques, constitute the three supports, 
that we have considered with a wide focusing, 
recovering the unity of the two classic branches of 
photogrammetry, surveys and photograms 
transformation. We have shown how they result 
decisive in the two stages, projective-based and 
metric-based, of these projects. The first one 
involves SFD, two-dimensional matching, and 
filtering (1 and 2) algorithms, that jointly provide 
reliable data to calculate the SfM recovery. While 
its performance in the second stage is based on 
one-dimensional correlation techniques between 
photopairs, especially through the latest SGM / 
MVS, along with the pre-DSM depth map filtering 
operators. In both stages, the combination of these 
filtering C.V. technologies, together with the 
optimization of errors, or "subpixel refinements", 
allow to improve the different partial calculations. 

The experimental basis of these operators is 
constantly evolving, and allows the resolution of 

increasingly ambitious projects, especially like 
those based on  hybrid-capture data, due to “their 
high repeatability for close-range applications” 
(Barazzetti et al., 2010). In summary, in relation 
with this first aspect, our analysis results in a brief 
review of these image-based projects, from the 
point of view of C.V. technologies. 

The second question, regarding its operativity, 
shows us how these algorithms concentrate the 
processes in which the operator's intervention 
options are relevant. From the analysis of our Case 
Study, we can draw useful conclusions, regarding 
three aspects. Firstly, we have seen how the 
relationship between the subsampling levels of 
SFD and  matching quality, can become 
problematic for a strong orientation, either due to 
an insufficient number of trackings, or an 
excessive disparity in the depth map. 

Regarding the orientation stage, we have 
identified some basic markers to ensure a strong 
SfM reconstruction, such as the SFD+Matching 
algorithms configuration, and the filtering 
intensity of the Sparse Cloud before the re-
calculation and bundle adjustment processes. 
These markers result particularly important to 
ensure the reliability of the “new methodologies to 
collect large amounts of data from various sources, 
that must be accurately registered and integrated” 
(Remondino et al., 2009), as we have verified in 
our Case Study. 

And thirdly, in relation to SGM/MVS 
technology, we have verified that its highest 
performance must be supported by a robust 
cameras model that provides metric reliability and 
results adjusted to the average photoscale of the 
capture, on the one hand, and to the conditions of 
the commission on the other. 

In summary, our research underlines the 
importance of C.V. operators to automatically 
reconstruct models of buildings with a high level 

Tab. 4:  SGM / MVS results overview. 

 Dense Cloud: 
Nº of 3D points 

SFD 
Match 

Orient. + Filter.-2 
 

SGM 

Medium 
Medium 
R +B.A. 

 
Basic 

High 
Medium 
R +B.A. 

 
High 

Medium 
Medium 
R +B.A. 

 
Basic 

High 
Medium 
R +B.A. 

 
High 

PhotoModeler 
(PM) 

4.131.365 15.419.773 6.129.992 18.002.975 

PhotoScan 
(PS) 

 

972.787 13.603.801 15.626.945 14.739.299 



(2021), n. 2 J. L. Cabanes, C. Bonafé 

 136  

of detail, and “giving more possibilities to study 
objects thanks to the complex and absolute 
interactivity between the real object (point clouds 
and photographs), and virtual system of 2D and 3D 
digital models” (Attenni et al., 2017).  

We have given here an overall review and 
some methodological improvements for its 
operativity, an unusual consideration, which can 
contribute effectively to achieve more accurate 
results in multi-image based projects related with 
heritage architectural models. “Computer vision 
techniques and procedures permitted to add a 
major automation (even to photogrammetric 
processes), but, in particular, they allow to model 
more complex objects, only exploiting the 
algorithms implemented in the common software 
tools.” (Aicardi et al., 2018).  

 
 

 

 

Fig. 9: Stereo point clouds obtained with Medium / High settings in PM (top) and PS (bottom), 
respectively, without pre-DSM filtering. It can be seen how a greater demand in the SFD + Matching and 

SGM / MVS algorithms, generally produces denser models, with a more uniform distribution of points and 
fewer clusters of outliers. This ensures a more precise metric evaluation, and a more sharp and uniform 

posterior mesh. Note: the displayed models are incomplete because the aerial photos are missing 
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