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Abstract 

E Higher compression time is a major issue in adoption of fractal image coding even though it offers various advantages in 
terms of higher compression ratio, higher resolution, and lower decompression time. Many optimizations have been 
proposed earlier to reduce the computation time in terms of parallelism and encoding space reduction. This work proposes 
an integrated approach combining both multithreaded parallelism and similarity based encoding space reduction to diminish 
the time of compression in Fractal image coding. The compression time of the proposed integrated method is tested for 
images of different resolution and the proposed solution is able to reduce the compression time by almost 4.4 times compared 
to existing fractal image compression techniques. 
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1. Introduction

Compressing the image is important for
efficient storage and transmission. Exponentially 
growing data volumes need effective data storage 
management also the rise of computer networks 
needs the effective bandwidth of networks by 
reducing the number of bits before transmission. 
The goal of image compression is to reduce 
irrelevance and redundancy of the image data to 
store or transmit data in an efficient form 
(Drakopoulos et al 2013). Image compression 
techniques can be briefly categorized to two types 
of: lossy and lossless schemes. Image quality is 
retained without information loss in case of 
lossless schemes. Lossy schemes exhibit a 
tolerable information loss. In proportion to loss, 
the compression ratio also increases. Fractal 
image coding (FIC) is one such lossy compression 
scheme (Jacquin et al 1989). It is built exploiting 
the redundancy in structure of the images. Fractal 
image compression achieves a higher compression 
ratio for images of self-similar characteristics.. A 
notable feature of FIC is that it is resolution 
independent. Due to this, there is not much 
difference in encoding for images and its scale up 
or scaled down versions. FIC encodes the image in 
terms of set of contractive affine transformations 

and parameters of these transformations. These 
transformations and parameters are saved to a 
binary file (Chen et al 2013). The effectiveness of 
FIC in achieving higher compression ratio is 
demonstrated in many works. FIC was able to give 
superior quality compressed image event at 
compression ratio as that of DCT based algorithms 
(Wohlberg et al 1999). For satellite images, FIC 
achieved a compression ratio of 170:1 (Woon et al 
2000). For videos, a compression ratio of 244:1 
was realized using FIC (Fisher et al 1995). Though 
these works achieved higher compression ratio, 
the compression time was very high. Many 
attempts have been made by various works to 
reduce the compression time in FIC. The existing 
strategies for reducing the compression time are 
based on two important optimizations: parallelism 
and reducing the encoding space. Search of 
matching blocks and finding the effective 
transformation for it is the time-consuming work 
in FIC (Fisher et al 1995). Parallelism speeds up 
this task by starting multiple instances of this task 
and maximizing the CPU utilization. Encoding 
space reduction algorithms reduce the number of 
instances of searching of matching blocks by 
exploiting the self-similarity in the images. In this 
work, an integrated solution is proposed 
combining parallelism and encoding space 
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reduction. Encoding space reduction is done by 
splitting the images to grid and grouping similar 
grids based on two measures of entropy and 
structural similarity index metric (SSIM). 

A representative grid is selected in the group of 
similar grids. Multi thread-based parallelism-
based FIC is done on the representative grid. By 
this way the encryption time is reduced. The 
compression time can be reduced in inverse 
proportion to grid similarity thresholds used in 
entropy and SSIM. Remainder of this paper is 
structured as follows: Section 2 put forward 
related work on the image similarity metrics and 
measures. Section 3 briefly describes the proposed 
solution. Section 4 discourses about the result 
part. In the end, some conclusions are presented in 
Section 5. 

2. Related Work

The core of the proposed solution lies in two
concepts of encoding space reduction and 
parallelism. Our earlier work, Ranjita et al (2021) 
provided a detailed review of existing works on 
parallelism. In this work review was done on 
reducing encoding space. Encoding space 
reduction involves grouping similar image blocks 
and doing FIC only on the most representative 
block in the similar blocks. This necessitates 
computing the similarity between the blocks. The 
existing techniques to compute the similarity 
between image blocks are detailed in this section. 
The similarity metrics most used in existing works 
are: Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Peak Signal to Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), 
Universal Quality of Image Index (UQI), Multi scale 
structural similarity index (MS-SIM), Error 
Relative Globale Adimensionnelle de Synthèse 
(ERGAS), Spatial Correlation coefficient (SCC), 
Spectral Angle Mapper (SAM), Visual information 
fidelity (VIF) and Entropy.   
Mean Square Error (MSE) is the average squared 
difference between two image patches pixel by 
pixel. It is calculated as 

𝑑 =
1

𝑁
. ∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1        (1) 

Where N is the number of pixels in image patch 
x and y. MSE just provides the average of distance 
between pixels. PSNR and RMSE are a variation of 
MSE. MSE, RMSE and PSNR does not provide any 
information about structure. A study by Hore et al 

(2010) and Lu et al (2019) have found that these 
metrics could not discriminate structural contents 
in the image and various types of degradations 
applied to the same image can yield same values 
for MSE and PSNR. Thus RMSE, MSE and PNSR are 
used only for measuring the effectiveness of image 
de-noising algorithms and not in image similarity 
applications. SSIM proposed in Wang and Bovik 
(2002) and Wang et al. (2004) is a composite 
measure involving three factors: mean (𝜇) of 
luminance, standard deviation (𝜎) of contrast and 
correlation coefficient (𝜌). It is calculated as 

𝑆𝑆𝐼𝑀 =
2.𝜇𝑥𝜇𝑦
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Palubinskas et al (2019) conducted various 
experiments with various types of distortions and 
found SSIM was able to discriminate structure 
contents and very sensitive to degradations 
compared to MSE. Wang et al (2002) proposed a 
metric called universal objective image quality 
index. It is based on three factors of: correlation 
loss, luminance distortion and contrast distortion. 
But the mathematical formulation used in this 
index does not adequately capture the estimate of 
correlation between images. Due to this, its 
sensitivity to distortion is more than MSE but falls 
short of SSIM. Wang et al (2003) proposed a multi 
scale structural similarity index (MS-SIM). Though 
it is more flexible than single scale methods in 
incorporating variations of viewing conditions, the 
computation complexity is high, and the scale 
selection is dependent on images. Wald et al 
(2000) proposed a metric called ERGAS specific for 
comparing similarity between synthetic images. 
The proposed metric is based on spectral 
correlation analysis and the computational 
complexity is higher in this method. Similar its 
ERGAS, an image similarity metric in spatial 
domain called Spatial Correlation Coefficient (SCC) 
was proposed by Vallejos et al (2016). The metric 
is based on analysis of hidden spatial association 
between two images. It does this by adding a co-
dispersion coefficient to SSIM. Addition of co-
dispersion coefficient to SSIM increases the 
computation complexity. Girouard et al (2004) 
proposed a metric called spectral angle mapper. 
This metric extracts spectra from individual or 
groups of pixels and compute statistics for regions 
of similar composition. This metric can also say if 
there are any similar regions in two images. Sheikh 
et al (2006) proposed visual information fidelity 
metric based on image information and visual 
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quality. The image information quantifies the 
information present in image and how much of this 
can be extracted from another image. The metric 
involves too many matrix multiplications, and it is 
computationally intensive. Aljanabi et al (2018) 
proposed an entropy measure for measuring 
image similarity, combining information theory 
and joint histogram. This measure has higher 
performance and accuracy compared to structural 
similarity index measure (SSIM), feature similarity 
index measure (FSIM) and feature-based 
structural measure (FSM). From the survey, 
Entropy measure proposed by Aljanabi et al 
(2018) and SSIM metric are found to more suitable 
for FIC as both have higher performance in 
computation and accuracy. Both metrics consider 
structural differences between the images. 

3.  Proposed Solution 

In the literature, many solutions involving 
parallelization or encoding space reduction were 
discussed. Most hardware-based parallelization 
has higher cost per compression time gain.  Most 
encoding space reduction algorithms have quality 
distortion. Thus, there is need for solution with 
less comparison time without much quality 
distortion and reduction in compression time. This 
work suggests a hybrid solution integrating both 
parallelization and encoding space reduction. The 
overall encoding process is given in Figure 1. The 
overall decoding process of the proposed solution 
is given in Figure 2. The proposed solution has two 
parts of encoding space reduction technique 
followed by parallelization. Each of it is detailed 
below.  

3.1  Encoding space reduction 

Two different strategies of entropy and 
structural similarity metric (SSIM) is used in this 
work for encoding space reduction. Both Entropy 
and SSIM are effective metrics for measuring 
similarity between two images and they are 
independent of image nature. They can work for 
any kind of images like medical, natural scenery, 
human portrait etc. These two metrics are selected 
for these properties in this work.  

The image is split to equal sized 𝑁 blocks. The 
blocks are grouped to cluster based on the entropy 
or SSIM similarity metric. From each cluster, a 
representative block is selected. FIC using multi 
thread parallelism (discussed in next section) is 
done only for the representative block, skipping 

the other blocks. In proportion to the number of 
blocks skipped, the compression time drops. 

The pseudo code for the proposed 
entropy/SSIM encoding algorithm is given below 
 
Algorithm: Entropy/SSIM encoding 
 

Step 1. Divide the image into blocks, say N   

Step 2: Take each block and calculate the SSIM (or 
entropy) to remaining blocks. If the SSIM (or 
entropy) > threshold [it means blocks are similar], 
then add the blocks to same cluster. 

Step 3: At end of step 2, a cluster is created in such 
a way that blocks within the cluster are similar. 
Step 4: For each cluster, take one representative 

block. (One block selected from each cluster).  

Step  5: 
encoded_rep_blockDo_Parallel_FIC_encode 
(representative blocks) and compress using Fractal 
compression.  For the rest of blocks in the cluster 
skip the Fractal compression and copy the result of 
representative block 

Step 6: write the result to a binary file. 

The decoding process is the reverse of the 
encoding process. The representative blocks are 
first generated for each cluster using FIC decoding 
process. The rest of cluster blocks are generated 
from their corresponding representative block. 
They are fitted into their position to get the 
original image block. The pseudocode for the 
proposed entropy/SSIM decoding algorithm is 
given below. 
 
Algorithm: Entropy/SSIM decoding  
 

Step 1. Extract the encoded representative block 
from compressed file (Repblock generated in 
encoding) 
Step 2: RepblockParallel_FIC_decode (encoded 
representative blocks). 
Step 3: Fit Repblock and generate image 
Step 4: return image. 

3.2  Parallelization 

The parallel FIC encoding/decoding algorithm 
used by the Entropy/SSIM encoding and 
Entropy/SSIM decoding is implemented by adding 
multithreading level parallelism to serial version 
of FIC algorithm (Abdul-Malik et al 2018).  The 
multithread level parallelism is added in such a 
way that it is a data level parallelism without much 
inter thread communication. In the serial FIC, an 
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initial image of size M*M is split to m non-
overlapping range regions of size r*r where  

𝑚 = 𝑀/𝑟2 and n overlapping domain blocks of 
size 2r*2r where 𝑛 = (𝑀 − 2𝑟 + 1)2. 

For each range block an approximate domain 
block and a relevant contractive affine 
transformation is selected such that 
𝑑(𝑅𝑖 ,𝑤𝑖𝑘(𝐷𝑘)) = min⁡𝑑(𝑅𝑖 ,𝑤𝑖𝑗(𝐷𝑗)) 

Block splitimage
Cluster Block by 

Entropy/SSIM similarity

Representative Block 

Selection in Cluster

Parallel FIC Encode for 

Representative blocks

Compressed file

 
Fig. 1: Overall encoding process 

 
 

Extract encoded 

representative 

blocks

Compressed

file

Parallel FIC Decode on 

encoded representaitive 

blocks

Generate rest of blocks 

from representative 

blocks

Fill blocks to generate 

image

Original image

 
Fig. 2: Overall decoding process 
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Where 𝑤𝑖𝑘 is the contractive affine 
transformation from k-th domain block and the i-
th range block i.e., 𝐷𝑘 to 𝑅𝑖 . This is done in a way 
such that mean square error distance represented 
as 𝑑(𝑅𝑖 ,𝑤𝑖𝑗(𝐷𝑗) from range block 𝑅𝑖  and the 

transformed domain block 𝑤𝑖𝑗(𝐷𝑗)) is minimized. 

The biggest contribution to encoding time is 
time spent in searching for similarity between 
range block and domain block (Plovera et al 2000). 
This time is reduced by adding parallelism to this 
search process. This search process parallelism 
has additional advantage of no associated issues of 
inter inter-thread communication, resource 
contention, racing, deadlocks etc. 

Each thread processes a range block in the 
range block pool. The thread does transformation 
of domain blocks, finds the matching transformed 
blocks based on minimization of mean square 
error between the range block and the 
transformed domain block. Each thread generates 
the transformed parameters for its range block 
which is returned as a parameter to the 
Entropy/SSIM encoding algorithm. 

 

 
 

Fig. 3:  Domain block to range block mapping 

 
The steps 5 to 10 in the serial FIC are selected 

for multithread parallelism that constitute one 
thread. Once all the threads complete, the results 
are collected and returned.  

The pseudo code of the parallel FIC encoding 
algorithm is given below. 
 
Algorithm: Parallel_FIC_Encode 
 

Step 1: A given image m is split into non overlapping 
range regions. 
Step 2: A given image m is split into overlapping 
domain regions. 
Step 3: For each range block start a thread 

In each thread for each domain block the approximate 

range block by selecting the range block with lowest 

MSE distance between the range block and 

transformed domain block. 

Step 4: Wait for all threads to complete  
Step 5: Return all the transformations. 

 

The decoding process is also parallelized by 
executing on each transformation in parallel. The 
pseudo code of the parallel FIC decode algorithm 
is given below. 
 
Algorithm: Parallel_FIC_Decode 
 
Step 1. Generate range blocks from the encoding 
result file   
Step 2: Select an initial image with same size as that 
of the original image. 
Step 3: Split range block matrix to K partition and 
start K threads  
Step 3: In each thread do the following 
     Apply the stored transformations that resulted 
from the transformed block for each range block.  
     Replace the pixels of the range block with the 
pixels obtained from the transform block.  
    The transformations and mappings are applied 
on the initial image iteratively until the image is 
restored. 
Step 4: Wait for all threads to complete  
Step 5: Return the reconstructed image. 

4.    Results  

The performance assessment of the proposed 
solution was conducted in 10th generation Intel 
core i5 10300H, 2.5 GHZ, 4 cores, 8 threads, 8GB 
RAM. The dataset image for performance testing 
was obtained by taking 14 different images in 
resolution of 512*512 and rescaling them to 
dimensions of 64*64, 200*200, 225*225. The 
proposed solution was compared with serial and 
parallel version of FIC implementation. The 
encoding and decoding times are measured for 
different images (Table 1) 

The results for comparison of compression 
time across the solutions are given in Table 2. The 
plot of it is given in Figure 4. From the results, it 
can be seen that Entropy based FIC methods were 
able to provide lower compression time followed 
by SSIM based methods. Grouping of blocks based 
on entropy and SSIM reduced the effective number 
of blocks to be considered for FIC encoding. This 
has reduced the compression time in entropy 
based and SSIM based solutions. 
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Tab. 1: Images used for experimentation 

 
 

 

 
 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 



(2023), n. 1 Similarity based Optimization to Fractal Image Encoding based on Multithreading… 

 173  

Compared to SSIM, entropy was more effective 
in reducing the number of blocks to be considered 
for FIC. This is because entropy better measures 
the joint probability of co-occurrence than means 
and variance used in SSIM. 

Entropy parallel FIC achieved the lowest 
compression time, and it is on average 12.64 times 
lower than serial FIC, 4.4 times lower than parallel 
FIC and 1.92 times lower than SSIM parallel FIC. 

The results of comparison of decoding time 
across the solutions are given in Table 3. The plot 
of results is given in Figure 5. The decoding time is 
lower in Entropy parallel FIC compared to all other 
methods. But the difference is very less compared 
to compression time. The decoding time in 
Entropy parallel FIC is on average 4.14% lower 
compared to serial FIC, 2.5 times lower compared 
to parallel FIC and 1.53 times lower compared to 
SSIM parallel FIC.   

The decoding time is reduced in Entropy 
parallel FIC due to reduction in number of blocks 
to be decoded. Since Entropy schemes has reduced 
blocks compared to Serial scheme, the decoding 
time is comparatively lower in Entropy parallel 
FIC. The decoding time is reduced in Entropy 
parallel FIC due to reduction in number of blocks 
to be decoded. Since Entropy schemes has reduced 
blocks compared to Serial scheme, the decoding 
time is comparatively lower in Entropy parallel 
FIC. 

The results of comparison of PSNR across the 
solutions for different image resolutions are given 
in Table 4. The box and whisker plot of it is 
presented in Figure 6.  In case of 64*64 resolution 
images, the difference in PSNR between solutions 
is less than 2 dB, in-case of 200*200 resolution 
images, the difference in PSNR between solutions 
is less than 5dB, in case of 225*225 resolution 
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images, the difference in PSNR between solution is 
less than 3dB and incase of 512*512 resolution 
images, the difference in PSNR is less than 7 dB. 
There is not much difference in PSNR across the 
solutions for different image resolutions.  

The results of comparison of MSE across the 
solutions for different image resolutions are given 
in Table 5. The box and whisker plot of it is 
presented in Figure 7. In case of 64*64 resolution 
images, the difference in MSE between solutions is 
less than 0.01, in-case of 200*200 resolution 
images, the difference in MSE between solutions is 
less than 0.01, in case of 225*225 resolution 
images, the difference in MSE between solution is 
less than 0.05 and incase of 512*512 resolution 
images, the difference in MSE is less than 0.01. 

There is not much difference in MSE across the 
solutions for different image resolutions. The 
proposed hybrid strategy of SSIM/Entropy with 

parallel FIC has not created a visual quality 
distortion as there is only a minor difference in 
PSNR and MSE.  

The results of comparison of Compression 
ratio (CR) across the solutions are given in Table 6. 
The box and whisker plot of it is presented in 
Figure 8. In case of 64*64 resolution images, the 
difference in CR between solutions is greater than 
1, in-case of 200*200 resolution images, the 
difference in CR between solutions is greater than 
3, in case of 225*225 resolution images, the 
difference in CR between solutions is greater than 
3 and incase of 512*512 resolution images, the 
difference in CR is greater than 7. Maximum values 
of compression ratio are in Entropy and SSIM 
parallel FIC, as the transformation of only the 
representative blocks are stored in the 
compression file compared to all block’s 
transformations in other FIC solution.  

  

 
Tab 2: Compression time results 

 
                                                 Compression time (seconds) 

Size Serial FIC Parallel  
FIC 

SSIM Serial FIC SSIM 
Parallel 

FIC 

Entropy 
Serial FIC 

Entropy 
Parallel FIC 

64*64 36.46 7.56 0.32 0.27 0.077 0.058 

200*200 155.31 29.61 26.88 21.76 17.34 11.98 

225*225 228.33 93.36 44.45 41.76 23.76 22.24 

512*512 4058.1 1824.3 1415.6 576.7 313.62 274.4 
 

 
Tab 3: Decompression time results 

 
                                        Decompression time (seconds) 

Size Serial FIC Parallel  FIC SSIM 
Serial FIC 

SSIM 
Parallel FIC 

Entropy 
Serial FIC 

Entropy 
Parallel FIC 

64*64 0.945 0.93 0.22 0.14 0.09 0.07 
200*200 3.244 1.85 2.61 1.254 1.00 0.994 
225*225 4.34 2.771 3.21 1.93 1.17 1.17 
512*512 18.1 11.10 17.66 6.77 5.301 4.25 

 

 
Tab 4: PSNR results 

 
                                                               PSNR (dB) 

Size Serial FIC Parallel  FIC SSIM 
Serial FIC 

SSIM 
Parallel FIC 

Entropy 
Serial FIC 

Entropy 
Parallel FIC 

64*64 30.858 30.858 31.496 31.496 31.80 31.80 
200*200 32.33 32.33 34.35 34.35 35.23 35.23 
225*225 32.65 32.65 34.91 34.91 35.59 35.59 
512*512 35.76 35.76 40.86 40.86 43.45 43.45 
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Tab 5: MSE results 

 
                                                               MSE 

Size Serial FIC Parallel  FIC SSIM 
Serial FIC 

SSIM 
Parallel FIC 

Entropy 
Serial FIC 

Entropy 
Parallel FIC 

64*64 1.98 1.98 1.986 1.986 1.986 1.986 

200*200 1.96 1.96 1.973 1.973 1.97 1.97 

225*225 1.97 1.97 1.967 1.967 2.011 2.011 

512*512 1.93 1.93 1.94 1.94 1.942 1.942 

 
 

 
Tab 6: Compression ratio results 

 
                                                Compression ratio 

Size Serial FIC Parallel  FIC SSIM 
Serial FIC 

SSIM 
Parallel FIC 

Entropy 
Serial FIC 

Entropy 
Parallel FIC 

64*64 2.62 2.62 3.26 3.26 3.6 3.6 

200*200 4.0 4.0 6 6 7.0 7.0 

225*225 4.24 4.24 6.5 6.5 7.6 7.6 

512*512 7.12 7.12 12.24 12.24 14.8 14.8 

 
 
 

 
 

Fig. 4:  Comparison of compression time 
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Fig. 5:  Comparison of decoding time 

Fig. 6: Comparison of PSNR 
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Fig. 7: Comparison of MSE 

Fig. 8: Comparison of compression ratio 
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Conclusion 

In this work, a hybrid solution combining 
encoding space reduction and parallelism is 
proposed to reduce the compression time without 
much impact on image quality and compression 
ratio. The solution used entropy/SSIM metric-
based grouping of blocks in image and replacing 
the transformation for similar blocks with 
transformation representative block. This along 

with multi thread-based FIC reduced the 
compression time. The performance test results 
with different image resolutions proved there is 
not much distortion to quality and compression 
ratio with the proposed solution. Exploring 
different metrics in line of entropy, SSIM etc. for 
grouping similar blocks and representative block 
selection using error differences are in scope of 
future work. 
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