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Abstract 

Archaeology is a human science that is very attentive to technological evolution. For decades, it has relied on technologies 
from the hard sciences (medicine, chemistry, geology, etc.). The emergence of satellite images with increasingly fine 
resolutions and the massive arrival of the drone in the field of archaeology have created new uses for the detection of 
archaeological sites. Multispectral imagery now supports other technologies (geophysics, Lidar). But it is above all the arrival 
of artificial intelligence and the development of Deep-Learning that is taking archaeology into a new era. The large amount of 
documentation generated by archaeology is conducive to the development of projects that will use artificial intelligence to 
help archaeologists in their research and enable them to obtain new results, both in the detection of archaeological sites and 
in the analysis of artefacts such as ceramics. 
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1. Introduction 

Archaeology is a discipline of the human 
sciences which very early on had to rely on 
technological developments in order to be more 
efficient as soon as the pressure of real estate 
development became apparent. 

Archaeologists, in the context of preventive 
archaeology (i.e. archaeology that takes place 
before development work is carried out), have had 
to reinvent themselves in order to meet legislative 
requirements and economic pressures. This was 
achieved firstly through technical improvements 
in the "field" phase (the archaeological excavation 
as it is understood, i.e. when archaeologists are on 
the dig). Mechanisation has become more and 
more important. 

Excavation techniques and recording methods 
have also been developed and improved, but it is 
during the study phase, i.e. after the excavation 
(the so-called 'post-excavation' phase) that 
archaeologists have to 'dip into' the hard sciences 
to acquire innovative methods of analysis. 
Archaeologists have drawn on technologies from 
the space field (Lidar, for example), from the field 
of medical imaging (X-rays for corroded objects) 

and from the field of geology (petrography for 
pottery fragments). Archaeology has also seized 
upon recent technologies for the general public 
such as VR and AR in the context of the 
enhancement of archaeological excavations and 
exhibitions.  

The multidisciplinary nature of archaeology is 
a breeding ground for innovative experiments, 
which explains why it is certainly the most 
“technology enthusiast” discipline in the 
humanities and social sciences. 

It is therefore not surprising that the 
innovative technologies of multispectral imaging 
or that of artificial intelligence (or augmented 
intelligence, dear to the great specialist Luc Julia) 
find a favourable ground for their development, 
even if it is still timid. 

This is what we are talking about here through 
some projects carried out within the Trame 
laboratory of the University of Picardy and within 
the start-up Arteka. 
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2. The development of aerial and spatial imaging 
for archaeology  

The traces left in the ground by ancient 
remains have, for many centuries, questioned 
scholars and researchers. It is easy to imagine that 
the grandfather of the famous Giorgio Vasari 
(1511-1574), Lazzaro, a 15th century painter who 
discovered pottery workshops from the period of 
the Roman Emperor Augustus, may have benefited 
from clues that were visible on the surface, or even 
from remains that were still in the air. 

Technology has then come to aid the eyes of 
researchers in their quest to discover what is 
invisible and hidden beneath the ground. The use 
of advanced technologies in archaeology has been 
an established fact since the early days of scholarly 
archaeology. Let us take the example of aerial 
archaeology.  

The history of aerial archaeology is almost as 
old as that of photography. The information 
obtained from aerial photography during the First 
World War was the beginning of the critical 
analysis of the traces left by human activity in the 
ground with the aim of locating trenches. 

The pioneers of archaeology were the 
Frenchman Antoine Poidebard and the 
Englishman Owen Crawford, who were soon able 
to observe alterations to the ground by aerial 
photography, particularly in the Syrian desert, 
where the low-angled light could reveal the 
infrastructure of the Roman limes (from 1925 to 
1932 in particular). 

Since then, aerial archaeology has evolved with 
the material but not in the methodology. Other 
pioneers have allowed this discipline to develop to 
help archaeological researchers, such as Roger 
Agache (1926-2011) in France, or Edmond Bernus 
and Yveline Poncet (Bernus, Poncet, 1981, Poncet 
1985). Since then, sensors have become more 
precise and allow a greater accuracy of surface 
anomalies. Vegetation is a privileged vector and 
seasonal cycles are landmarks for the aerial 
archaeologist. The researchers then added the 
satellite images. Summary books are regularly 
published (Goguey, Cordier, 2015, Ceraudo, 2010) 
and publications and specialized journals on the 
subject of aerial archaeology are numerous (for 
example the Italian journal Methodology Applied 
to Archaeological Potential Predictivity).  

The early 2000s saw the development of public 
satellite image platforms. The creation of Google 
Earth in 2001, followed in 2005 by Bing Maps and 

then the French service Géoportail in 2006, greatly 
contributed to the democratisation of the use of 
mapping tools, rapidly followed by the use of 
satellite images by the archaeological community.  

Several articles on the use of satellite images in 
archaeology were published following the launch 
of these programmes (De Laet, Paulissen & 
Waelkens, 2007; Garrison, Houston, Golden & 
Inomota, 2008; Goossens, de Wulf, Bourgeois, 
Gheyle & Willems, 2008; Déodat, Lecoq, 2009).  

From the 2010s onwards, space archaeology 
has experienced a turning point with high-profile 
projects, in particular the one led by Sarah Parcak, 
a professor at the University of Birmingham, in the 
state of Alabama, in the USA. The GlobalXplorer 
project is a collaborative online platform where 
anyone can search for archaeological sites around 
the world using satellite images and feed a very 
rich database. It is at this time that the CNN 
revolution really took off, notably thanks to the 
Imagenet competitions and especially in 2012 
with the performances of the AlexNet neural 
network. This is what archaeology has been 
missing and these numerous exploitable data. The 
projects and publications are taking on a real 
magnitude since the emergence of these CNN and 
the associated Deep Learning. Since then, research 
teams have coupled satellite images, sometimes 
with different spectral bands, with artificial 
intelligence. This is the case, for example, of the 
remarkable work of detection of archaeological 
sites in the steppes of Central Asia (Caspari, 
Crespo, 2019) or that on the detection of sites of 
the Indus civilization in Pakistan (Orenga et al., 
2020) or in Peru (Karamitrou et al., 2022) or in 
Iraq (Soroush et al., 2020). The power of Deep 
Learning (with some CNN) also allows the fusion 
of geophysical data or Lidar data for the detection 
of archaeological sites (Küçükdemirci, Sarris, 
2020, Bonhage et al., 2021). 

Deep-Learning is also used in the detection of 
archaeological sites not only by the traces left in 
the ground but by the presence of ceramic 
fragments (potsherds) identified by artificial 
intelligence and by drone. It is a new approach to 
archaeological prospecting (Agapiou et al., 2021). 

In France, a few projects are being structured, 
notably in the North of France with Tahar Ben 
Redjeb, a specialist in archaeological site 
prospecting within the Regional Archaeology 
Department (DRAC Hauts-de-France), which we 
are joining.  
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As early as 2013, we had established a search 
for archaeological sites in a geographical sector 
located in the east of the Somme department. The 
results were then integrated into T. Ben Redjeb's 
programme. From 2013 to 2015, this project made 
it possible to integrate and geo-reference more 
than 1,500 archaeological sites on the QGIS. The 
methodology was presented at the Regional 
Archaeology Days in 2013 and 2016, and then in 
an article by R. Parpworth-Reynolds of Microsoft 
Bing Maps on the Grey Matter blog (Parpworth-
Reynolds, 2019). 

The first results were able to highlight 
particular occupation dynamics. The Somme 
valley develops from east to west. Some of its 
confluences are oriented from south to north and 
in this case the archaeological sites are mainly 
located on the western side (Selle valley).  

In parallel, technological development has led 
to the development of publications oriented 
towards aerial archaeology but increasingly 
presenting results by mixing technologies such as 
RGB ortho-photography and Lidar (e.g. in 
Northern France and Belgium. Henton, Hannois, 
2014 ; Henton, Fourny, Van Assche & Clarys, 2016) 
or the use of thermography (Beaufrère, Dabas, 
Décriaud & Tabbagh, 1999; Calastrenc, Baleux, 
Poirier & Rendu, 2020). 

Faced with the large amount of data to be 
processed, archaeology is increasingly turning to 
artificial intelligence. 

3. Multispectral imaging for archaeology 

Aerial image capture has always been carried 
out with RGB sensors and the first 'adventurers' 
who embarked on experiments chose to test 
infrared sensors and essentially thermal cameras. 
The principle is based on the existence of a 
temperature differential between the buried 
remains and the surface environment 
(Eppelbaum, 2009). In this way, it is possible to see 
the shapes of substructions or anthropogenic 
excavations. However, the quality of resolution of 
the cameras used by these pioneers was not 
equivalent to what we have today 

After two years of R&D, the start-up Arteka has 
developed a multispectral imaging protocol based 
on proven technologies such as satellite 
multispectral imaging. Several wavelengths were 
tested, some were abandoned, others were 
retained, between the 360 and 16,000 nm bands 
(see Figure 1). Bands in the visible spectrum are 

also widely used as they are very effective on 
certain anomalies.  

 

 
 

Fig. 1: The electromagnetic spectrum (Rahrig, Drewello & 
Lazzeri, 2018) 

 

The choice of wavelengths is essential. It has 
been necessary to modify some cameras to try out 
different wavelengths. Some of them have not 
been satisfactory so far, while others, especially in 
the infrared, have proved to be more relevant. 

For more than two years, different sensors on 
board drones were used on different terrains in 
the North of France during the four seasons. The 
terrain presented the essential characteristics: 
plateau, upper slope, lower slope, cultivated, 
ploughed or fallow land. 

All these parameters allowed us to calibrate 
the protocol and to identify the types of land and 
the period of the year most likely to produce 
positive multi-spectral responses. If the protocol is 
operational, other wavelengths should be tested as 
the potential of multispectral imaging is 
significant. 

The images are captured at 50m altitude with 
12MP cameras giving a GSD of about 2cm (2cm per 
pixel). The photos are geo-referenced which 
allows the creation of precise ortho-photographs 
in geo-tiff format. Several calculations are then 
carried out by combining different ortho-
photographs. Each ortho-photograph corresponds 
to a precise spectral band. The calculations then 
carried out make it possible, in the manner of 
NDVI, to show anomalies specific to archaeological 
excavations. 

The results vary from one type of land to 
another. 

When the ground is freshly ploughed, the 
results are almost nil (with the exception of 
imposing buried structures such as Roman roads). 

In Figure 2, this is a major site in northern 
France, a former military camp that would have 
hosted Julius Caesar's armies in 57 BC. The image 
shows traces of ploughing but the vegetation had 

https://codematters.online/author/rebecca-parpworth-reynolds/
https://codematters.online/author/rebecca-parpworth-reynolds/
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already grown slightly. Anomalies in the form of 
zigzag tracks appear (see Figure 3). They may 
correspond to trenches from the First World War. 
Other trenches are indicated on military maps of 
the time, a few hundred metres to the north, but 
those discovered here have not been referenced. 
This is therefore new information for the 
knowledge of WW1 trenches or gutters behind the 
front line. 

 

 

Fig. 2: Aerial image of the site (in black the trench area). 
Geoportail (IGN 2021 ©) 

 

 

Fig. 3: Result with a specific spectral band. The zigzag 
trenches can be seen on the left of the image (ARTEKA ©) 

 
Another example, near Amiens, in the North of 

France, with this uncultivated land, as it is a model 

airfield. The land is not altered by recent 
agricultural activity. However, it has been used as 
a dumping ground, a motorbike cross-country 
track and a football field (see Figure 4). 

 

Fig. 4: Photo-editing with satellite image of the terrain 
(Google Earth ©) at the top and the terrain at the bottom 

revealing excavations by multispectral imaging (ARTEKA ©) 

 

After multispectral processing, we can clearly 
see many dark traces that correspond to hidden 
diggings in the ground. The difference in soil 
density between an excavated pit and the natural 
terrain can be seen in the vegetation, which will 
react differently. This is a principle that has been 
known for a very long time in aerial archaeology. 
Here, the precision of the sensors can reveal 
diggings (such as the ancient post holes of Gallic 
houses for example) of a few tens of centimetres in 
diameter (see Figure 4).  

While multispectral imagery provides more 
accurate information than satellite images on land 
before the start of an archaeological dig to locate 
remains in the excavation area but also on its 
periphery, we were also able to test it on a site 
during excavation. Equipped with precise 
wavelengths, we worked on the excavation of the 
Evéha company in Ilies-Salomé, in the Pas-de-
Calais (Northern France) in August 2020. The 
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ground was particularly dry due to a major 
drought episode. Stripping had made it possible to 
distinguish the remains, but variations that were 
not very visible to the naked eye had made it 
difficult for the archaeologists to form certain 
impressions. The presence of a talweg was 
suspected but it was not possible to locate it on the 
site. The multispectral was able to highlight 
geological anomalies.  

The light pink area corresponds to a thalweg 
that was not visible during the stripping, even 
though the archaeologists had spotted a variation 
in the soil, without being able to identify the 
precise limits of this thalweg. Another 
contribution was the use of multispectral imagery 
to confirm relative chronology data by showing 
overlapping archaeological structures, thus 
confirming their chronology. The drains that were 
uncovered intersect with the principle of 
stratigraphy: what is below is older (see Figure 5). 

 
 

 

Fig. 5: Multispectral orthophotography of an archaeological 
excavation with stripping. The soil shows visible geological 
anomalies. Overlapping drains can also be seen, allowing a 

relative chronology 

 

4. Computer vision for archaeology 

4.1   Satellite imagery 

The mass of data has motivated the setting up 
of a research project within the Trame laboratory 
of the University of Picardy which consists of using 
an artificial intelligence algorithm to automatically 
locate archaeological sites on satellite images, 
without image processing. 

We were able to integrate the data collected 
and integrated into a GIS (QGIS) before testing the 
recognition of archaeological remains visible to 
the naked eye, with a computer vision algorithm. 
The choice fell on an artificial intelligence 
algorithm based on supervised learning. An initial, 
very limited dataset was established to test the 
methodology and the algorithm. The dataset 
consists of satellite images as well as aerial 
photographs of about 400 entries, some of which 
include several archaeological sites. More than 
950 images were selected to be included in the 
new database. 

The first step was to define the elements that 
would be taken into account in the computer 
analysis ("Tags". See Figure 6). Five types of 
archaeological occupation (remains observable on 
the satellite photos) were chosen for the first 
iterations: Simple ditches, Bronze Age burial rings 
(ca. 2300 BC-800 BC), Roman roads, ditched 
enclosures (protohistoric or ancient settlements), 
Roman roads, and finally the remains of 
buildings/villas (traces of foundations : residential 
buildings, agricultural buildings, temple/religious 
buildings). 

 

Fig. 6: Constitution of the dataset. The remains have been 
traced. Satellite image (Bing Maps/Microsoft) 

 



(2022), n. 2 C. Chaidron, S. Lermenier 

 92  

The second step was to feed the software with 
satellite photos of which the remains have been 
redrawn. Computer analysis is thus facilitated by a 
worked image. The aim of this phase is firstly to 
make the protocol valid with easier indications. 
The purpose of submitting images with traced 
sites to the NCC is to provide them with images in 
which the tracks are very visible, as may be the 
case in some terrain after periods of drought. It is 
a way to simulate a particular climatic condition. 

At this stage, it is not a question of performing 
the algorithm but of establishing the methodology 
for labelling the elements to be located on the 
image. The results were convincing for iterations 1 
and 2. Images not used in the training phase of the 
machine were then proposed to the machine 
(80/20 ration). The results were positive in many 
cases. For iteration 1, the number of training 
images is 171, and the percentage accuracy is 80% 
(8.9% Recall, 16.2% mAP). The enclosures are the 
most numerous artefacts with 72 images giving 
100% accuracy (15.8% Recall, 39.9% mAP). This 
information is only intended to show the 
methodological direction. 

For iteration 2, the number of images 
increased to 260. The accuracy rate increased to 
84.6%, 15.9% Recall and 33.4% mAP. Enclosures 
and Bronze Age circles are the two categories 
where the number of images is sufficient for the 
machine. With 110 images for the enclosures, the 
accuracy rate is still 100% (Recall: 20.8%; mAP: 
45.0%). The circles have an accuracy rate of 66.7% 
(R.: 25%; A.P.: 49.2%). Although the number of 
images is insufficient for 'buildings' and 'ditches', 
the accuracy rate is 100%. Only the 'tracks' have a 
0% accuracy rate with 27 images. 

Once the training phase was completed, it was 
possible to carry out image analysis tests using the 
"Quick test" function and the results confirmed the 
methodology. The algorithm easily detects the 
remains and identifies them according to the 
groups defined, sometimes with very high 
precision.  

As the protocol was validated for images in 
which the archaeological sites had been traced on 
the image, the next stage of the tests was to 
determine whether the machine could identify 
archaeological sites on untouched satellite images. 

Two iterations were carried out with a number 
of images comprising those from iterations 1 and 
2 to which we added 'raw' images. 

Iteration 3 was used as a quick test, which was 
not very convincing (9 additional images, i.e. 269 

images in total). The accuracy rate fell to 70% 
(Recall: 10.8%; mAP: 24.7%). 

The last iteration (iteration 7) added more 
"raw" images. Iteration 7 covers a total of 525 
images distributed as follows: 120 images for 
building foundations, 233 images for ditched 
enclosures, 72 images for Bronze Age circular 
enclosures (very simple shape) and 100 images for 
ditches (mainly Celtic and Roman). 

The accuracy rate is now 82.9% with 38% 
Recall and 47.8% mAP. The results are still weak 
but the evolution of the statistical data allows first 
encouraging and very relevant tests. The results 
were obtained after a short 2-hour training of the 
CNN. 

The machine training therefore generated 
different percentages with the addition of these 
"raw" images. Tests were then performed with 
images that were specially kept and not used to 
feed the CNN. In some cases, when the tracks are 
very discrete, the machine cannot detect them. 
However, in many cases, the results are positive. 
This shows the limits of the exercise when the 
database is still weak. 

 

 

Fig. 7: Location of archaeological excavations [7] On the left, 
a quadrangular fossilized enclosure perfectly identified 

(80.1% accuracy). On the right, two quadrangular ditched 
enclosures confused by the AI into a circular enclosure (85% 

and 24% accuracy). 

 
In some cases, the AI is able to locate a more or 

less square ditched enclosure with an accuracy of 
80.1% while for other similar enclosures, the AI 
sees circular enclosures. However, in both cases, 
the archaeological remains were detected (Figure 
7). 

The rest of the protocol will have to feed the 
machine with other "raw" photos and test the 
machine's reactivity with raw images that have not 
been used for training (test images).  

Eventually, algorithms developed on open 
source platforms will be preferred (here we used 
the Custom Vision CNN from Microsoft's Azur 
suite) in order to facilitate bridges with open 
source GIS software and to allow the integration of 
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geo-referenced data in order to automate the 
integration on a map. For other projects, the AWS 
CNN has also shown its effectiveness. 

Finally, with the development of multispectral 
imagery, it is not impossible to imagine being able 
to couple this technology with artificial 
intelligence and allow the multi-computer 
detection of terrain anomalies such as 
archaeological sites. Currently, this type of 
analysis cannot be performed live because it 
requires processing time. 

 
4.2. An assistant for the study of ancient ceramics 

 

As the study of ancient ceramics is at the heart 
of our research activity, we used the same 
algorithm to test the recognition of ceramic 
fragments, which are particularly numerous on 
archaeological sites. To understand how artificial 
intelligence will be able to revolutionise a 
speciality of archaeology such as ceramology, it is 
necessary to understand what it brings to 
archaeological reflection today.  

Ceramology as it is currently understood in 
archaeology was established progressively from 
the end of the 1960s (Goudineau, 1968; De Laet, 
Thoen, 1969 for example). The first boom came in 
the 1970s when, under the impetus of a few Anglo-
Saxon (Peacock, 1977) and French (Picon, 1973) 
researchers, the study of ceramics no longer 
focused on a catalogue of reasons but on a detailed 
analysis of the clays, or fabrics, as the English term 
is used. The ceramologist thus left the role of an 
expert in dating, in typology (catalogue) with a 
macro-economic vision (diffusion of amphorae for 
example) to one that is also nourished by the Earth 
sciences with micro-economic visions of the 
productions. 

Since then, studies have, depending on the 
financial means allocated, opted for the use of 
archaeometry to characterise petrographically 
and chemically the clays used. 

To identify the origin of an ancient vase, 
ceramologists proceed by visual comparisons 
between reference sherds from attested 
workshops and sherds from excavations. 

Since the 1990s, particularly in northern 
France, correlations have been systematised. 
Groups of production have been defined by 
grouping sherds with the same characteristics.  

A synthesis article was published in the 
proceedings of the French Society for the Study of 
Ancient Ceramics in Gaul held in Chelles (France) 

in 2010. It presents the main productions as well 
as the associated typological repertoire. Diffusion 
maps indicate the limits of the marketing areas for 
each group of workshops, defining each time a 
specific cultural entity (Clotuche, Chaidron, 
Comont, Dubois & Willems, 2010). 

This is a synthesis of a group of researchers 
over a period of twenty years, covering hundreds 
of thousands of shards. Today, this work can be 
done more quickly and take into account the large 
amount of data collected in the several hundred 
excavation reports or archaeological diagnoses 
produced in France in particular. 

Ceramics remain the most numerous 
manufactured element (artefact) (volumes can 
sometimes be counted in several hundred kilos per 
archaeological excavation) but also the one that 
allows a multiple approach, providing major 
information for the understanding of an 
archaeological site over time. Ceramology also 
allows a change of scale because, if it can reveal the 
place of imports, of influences, on a settlement site, 
it can also model trade flows of different calibres: 
long-distance land trade, but also supplies that we 
would now call "short circuit" of small local 
workshops belonging to landowners, who come to 
distribute the fruit of their labour in cities of 
different sizes. By following the evolution of 
production over time, the ceramist can also 
understand how a form spreads from its centre of 
production to the various centres of consumption. 

The ceramologist will also be able to observe 
the impact of the "Romanisation" of food customs 
and habits (for the Roman period, of course) with 
the arrival of certain forms intended for uses 
hitherto unknown in northern Gaul (for example, 
mortars). It can also understand the cultural 
influences, particularly in the "buffer" zones 
located on the borders of the cities, which 
sometimes allow one influence to be felt more than 
another. 

Another problem addressed by the study of 
ceramics is the identification of the civilian or 
military character of the furniture. Since the 
excavation of major military sites closely or 
distantly associated with Julius Caesar's "Gallic 
War" (Actiparc-Saint-Laurent-Blangy, La 
Chaussée-Tirancourt, Amiens "Square Jules 
Bocquet", Arras "Baudrimont", Rouvignies "ZAC 
du plateau d'Hérin"), it was possible to identify a 
specific military pack that had shapes that were 
not to be found in the catalogue of civilian 
tableware (this is not a general rule, as many 
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imported shapes used by the military would 
remain). It is therefore possible, by reading the 
discarded tableware, to prove the military 
character, total or partial, of an archaeological site 
(Chaidron, Clotuche & Willems, 2017). 

The list of problems is long and can be further 
extended by taking into account funerary furniture 
or, for example, workshop crockery (comparing 
the crockery produced and that used). 

If the list of problems is long, the list of pasta 
groups is even longer. The methodology of the 
reasoned study of ceramic pastes, which began 
after the Second World War in Great Britain 
(Hawkes, Hull, 1947) and again in the 1980s in 
Great Britain (Rigby, Freestone, 1986), was then 
widely disseminated in France, particularly in the 
1990s in the North of France (even though the first 
elements had been put in place in the 1980s). The 
detailed analysis of pottery "pastes", which are 
commonly referred to under the British term 
"fabric" (fabric covers the type of clay used, the 
degreasing agent, the elements present naturally, 
the firing method and surface 
treatment/decoration), has made it possible to 
establish coherent zones of diffusion and to define 
production areas even if the workshops have not 
been discovered (which resulted in a summary 
publication. Clotuche, Chaidron, Comont, Dubois & 
Willems, 2010). 

To do this, chemical and petrographic analyses 
had to be carried out to define groups as observed 
by macroscopic analysis. Shards from workshops 
were thus analysed and compared with shards 
found in consumption centres. 

The macroscopic analysis protocol of the 
fabrics was thus validated and allowed the 
ceramologists to find in the studied sets, the 
fragments corresponding to the workshops thus 
defined. 

This work is fastidious and has been based on 
published quality references, and we would like to 
mention in particular the work of our colleagues 
from the Museum of London Archaeology Service 
(Tomber, Dore, 1998). Tedious because it is 
necessary to use the microscope (or 
stereomicroscope) to identify certain productions 
whereas others, on the other hand, are easily 
identifiable by the ceramologist as soon as he has 
the necessary experience. Experience is a major 
factor in the identification of provenance, and this 
is one of the major points of the AI contribution. 

Moreover, it is very regular for the 
ceramologist to come across fragments that 

cannot be attributed to workshops characterised 
by chemical analysis. This results in an army of 
undetermined fragments. It is not feasible to send 
all the undetermined sherds from all the 
excavations for chemical analysis, which, 
moreover, will give nothing as long as the clays 
that were used are not in the chemical or 
petrographic reference base. 

To try to answer this problem, in 2021, the 
company Arteka, in collaboration with the 
company Arkéocéra (a ceramics research 
company), launched an image recognition analysis 
programme with a machine learning algorithm 
(Deep Learning). The first step was to create an 
initial database of certain fabrics from the North of 
France that were defined by chemical analyses 
(workshops in Arras and Beuvraignes, for 
example). 

The first results are very encouraging and have 
confirmed that the use of an artificial intelligence 
algorithm would make it possible to identify more 
precisely unidentified productions by attributing 
them (by probability) to the main groups of 
workshops (See Figure 8). 

Without being able to give a workshop name to 
the hitherto unknown pastes, the algorithm set up 
by Arteka, will make it possible to propose 
identification leads, to place the shards in a 
production zone by probability with the reference 
zones, to classify them. 

A study phase use is currently under 
consideration after initial tests have proven 
positive. Tests are scheduled for live analysis on a 
microscope with Arteka's AI analysis technology 
(patent pending). 

 

 

Fig. 8: AI identification of a ceramic sherd (cross-sectional 
view) from the Gallo-Roman potters' workshops of Arras 

(France) (ARTEKA ©) 

 

This type of scientific approach is gaining 
momentum and it is worth mentioning the 
European Archaïde project, which is a leading 
project in the use of AI and archaeology. 
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Following on from the Archaïde project, the 
University of Leicester has launched a programme 
comparable to Archaïde and just as fundamental. It 
aims at "automatic recording and machine 
learning for the collection of Roman ceramics and 
investigating food and consumption practices". 

Finally, the University of Louvain (S. Willems, 
Centre de Recherches en Archéologie Nationale 
(CRAN), Université Catholique de Louvain-La-
Neuve), the University of Vienna (B. Borgers, 
Department of Classical Archaeology, University of 
Vienna) and the company Arteka (C. Chaidron - 
Laboratoire Trame-Université de Picardie Jules 
Verne) are building on the initial work of Arteka to 
also launch a European research project 
(presentation at the 28th International Congress 
European Association of Archaeologists (EAA) 
with a paper entitled : "The use of Deep Learning 
algorithms for the study of Roman pottery fabrics 
(FabricAI)"). The aim is to establish a database of 
the main ceramic productions supported by 
chemical or petrographic analyses and then use 
artificial intelligence. The algorithm will aim to 
identify fragments from multiple excavations in 
order to characterise production areas, draw up 
precise distribution maps and refine the 
chronologies in use in the Roman province of 
"Belgium" (Northern France, Belgium and the 
Netherlands). The project is based on Arteka's 
autonomous live AI analysis solution (patent 
pending).  

Ceramologists identify fragments by precise 
criteria: firing modes (e.g. reducing or B-mode 
ceramics/Grey Wares, oxidising or A-mode 
ceramics/White Wares, Terra Sigillata, 
stoneware), surface treatment (slip, glaze), paste 
or clay (Northern Gaul, Central Gaul, Italic, Eastern 
Gaul, Britain or even by workshops) as well as 
shape or also called "typology". All these criteria 
are very important pieces of information that the 
ceramist must learn. Experience will allow to 
identify a vase with a very small fragment but this 
experience is long to acquire. Similarly, the 
bibliography is immense and one cannot imagine 
an archaeologist being able to compile hundreds 
or even thousands of articles published since the 
middle of the 20th century. This is another 
opportunity for AI to free the researcher from 
certain tasks so that he can concentrate on the 
analytical phases. For this reason, initial tests have 
been carried out to identify ceramic fragments 
using a supervised learning artificial intelligence 
algorithm (See Figure 9). 

 

Fig. 9: Detection of several categories (White Wares, Terra 
Sigillata and Grey Wares. Grey Wares are indicated by CR 

with 94% relevance) 

 
Archaeology is a data and image science. AI, 

which is still in its infancy in this field, will allow 
important advances that were not possible before, 
or that would have required too much time for 
archaeologists. 

5. Conclusions  

Archaeology is a science that generates data, 
data collected before the excavation (satellite 
image research, archaeological diagnosis), during 
the excavation itself and also during the study 
phases, once the excavation is complete. These 
quantities of data are significant. Just look at the 
number of excavation reports submitted to the 
authorities each year in France (more than 200) 
and the number of scientific articles published 
each year (almost 200 French publications per 
year between 2011 and 2016; Rapport de synthèse 
et prospective de l'archéologie française, 2019). 

Scientific publications distort the reading of 
the masses of information to be processed because 
their aim is to present the results of a research 
project and therefore, de facto, a synthesis of the 
data and the researcher(s)' thoughts. 

Excavation reports, considered as 'grey 
literature', do not make the economy of data since 
'raw' information is generally integrated among 
which the thousands, even hundreds of thousands 
of artefacts collected during the excavation. 

This is where artificial intelligence comes into 
its own when faced with masses of data that 
archaeologists do not have the time to process. 
Artificial intelligence comes as a tool that will 
accelerate certain tasks and free up the 
researcher's time to work on the substance, where 
the added value lies. 

AI projects are likely to develop in the 
archaeological and cultural field and not only for 
scientific research purposes. At the end of 2020, 
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the German Fraunhofer-Gesellschaft developed a 
mobile application to identify stolen cultural 
property. 

Finally, cross-spectral imaging comes into play 
at another stage of scientific thinking. While it can 
help to locate remains, it will above all enable 
archaeologists to obtain information on large 
areas where satellite images will be confronted 
with their resolution (generally 50cm/pixel). The 
advantage of the drone is, in addition to better 
resolution (which will be challenged by the 

development of aerial photography projects such 
as the French Géoportail platform with its 5cm 
resolution photos), the possibility of multiplying 
spectral bands very easily, which will always be 
easier than changing a spectral band on a satellite 
in orbit, but also its ease of deployment to go 
quickly to an area and acquire data in only a few 
hours. 
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