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Abstract 

The accuracy of 3D models in historical buildings is a debated topic due to the increasing demand for digital 
documentation and the need for automated post-processing methods to reduce manual labor and improve data 
analysis. The proposed method aims to improve 3D reconstruction efficiency for complex geometries exemplified by 
the Ognissanti Church of Trani (XII century), Italy. The methodology includes point cloud segmentation and 
classification algorithms, (RANSAC and Random Forest) to isolate architectural elements. The segmented portions 
undergo processing utilizing three 3D reconstruction algorithms: Alpha-Shape, Ball-Pivoting, and Poisson Surface 
Reconstruction. Customized settings enable polygonal meshes with varying levels of detail. Visual Programming 
Language operations refine the resulting meshes in terms of triangulation and computational efficiency, ensuring a 
high level of fidelity and applications in HBIM framework. 
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1. Introduction 

The precision of 3D building models has 
become a contentious research topic within the 
realm of historical architecture. Over the past few 
decades, there has been a growing need for digital 
documentation serving diverse objectives. 
Advancements in technology have facilitated the 
development of intricate, reality-based 3D 
representations that accurately depict the current 
state of buildings, sculptures, and artifacts. Such 
models find utility across a range of applications, 
including building documentation (Clini et al., 
2018) (Leserri & Rossi, 2023), virtual reality 
experiences (Cicerchia & Solima, 2021; De Fino et 
al., 2020), and cost-effective documentation 
(Musicco et al., 2023). Terrestrial Laser Scanning 
(TLS) and digital photogrammetry allow the 
creation of extensive sets of detailed 3D scenes 
represented as point clouds. These geometric 
structures are becoming increasingly essential to 
support the 3D modeling process (Florio et al. 
2019) (Yang, Shishuo, & Wei, 2022).  

However, the process has two main 
drawbacks: it requires a significant time 
investment and it generates an excessive amount 

of data, as 3D scans (regardless of whether they 
are based on TLS or close-range photogrammetry) 
contain much more information than is actually 
necessary for 3D modeling, for these reasons there 
is the need to consolidate methods to streamline 
post- processing of point clouds, which will reduce 
the time and  manual  activities  related  to 
discretization, classification and analysis of data 
contained in the point clouds (Cotella, 2023). 
Actually, from a methodological standpoint, the 
deconstruction of the building heritage, 
considering its plasticity, and the grammar of 
geometric forms, serves as the starting point for 
defining the variable elements of the parametric or 
solid model.  

The semantic classification of architectural 
elements, prior to the modeling phase, is a 
fundamental step to avoid creating objects devoid 
of architectural significance. Furthermore, solid or 
parametric modeling of Cultural Heritage (CH) 
objects, often altered by the time that has passed 
since their original form, can introduce an 
excessive level of approximation which leads to 
errors in the documentation of the state of the 
places (Capone & Lanzara, 2019). 
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The document outlines a parametric-assisted 
method for dimensional control of reconstruction 
of three-dimensional models for the built heritage. 
Research implements emerging open sourcing and 
cloud computing paradigms using freely available 
software technologies (CloudCompare and 
Python) that can facilitate accessibility to potential 
asset reuse. The proposed workflow is applied to 
the Ognissanti Church of Trani (Italy, XII century) 
which contexts entail a substantial volume of 3D 
points, diverse geometries, intricate decorations, 
and irregular architectural elements. 

The process of segmentation of the whole 
dataset and the 3D reconstruction by meshing 
algorithms of a column of the central nave is 
described. Different kinds of algorithms have been 
applied for the segmentation and the classification. 
The point cloud segmentation activity was semi-
automated by integrating the use of two 
algorithms, Random Sample Consensus (RANSAC) 
(Fischler & Bolles, 1981; Schnabel et al., 2007) and 
Random Forest (Letard et al., 2024), to isolate the 
architectural elements present in the dataset. 

For complex elements such as columns, a 
meticulous study of 3D reconstruction parameters 
was conducted using meshing algorithms, 
including Alpha-Shape, Ball-Pivoting, and Poisson 
Surface Reconstruction, to ensure finer control 
over dimensional characteristics at multiple levels 
of detail, tailored to specific requirements 
(Bernardini et al., 1999). In an HBIM context 
optimization of polygonal models in terms of 
triangulation and parametric association with 
architectural elements was facilitated through the 
use of Visual Programming Language (VPL) tools 
such as Dynamo in Autodesk Revit. 

2. State of Art 

The surveying activity of architectural survey 
through digital methodologies acquires the 
position of points collected in the so-called clouds 
which are then represented in three-dimensional 
models from which traditional two-dimensional 
drawings are extracted (Di Giuda & Villa, 2016). 
These products allow for the preservation of a 
significant amount of information regarding the 
surveyed objects. Point clouds are sets of 
thousands of points, each of which is identified by 
spatial coordinates and colorimetric information. 

The amount of data processed during digital 
surveying requires developing methods for 
automating semantic analysis processes of point 
clouds and solid, parametric 3D reconstruction. 

In the following sections, a focus is presented 
on literature regarding point cloud segmentation 
and classification algorithms (Sec 2.1), as well as 
mesh processing (Sec 2.2). 

2.1 Segmentation and classification methods for 
enhancing modeling process 

The segmentation methods of point clouds 
commonly used in literature to support the 
modeling process can be divided into two main 
categories: traditional methods (region growing, 
model-fitting, clustering, etc.) and innovative 
methods which introduce artificial intelligence 
algorithms (machine learning, deep learning, etc.) 
(Zhao et al., 2023). Among the traditional 
approaches, we can distinguish two categories 
more commonly used in the field of CH: region 
growing and model fitting. 

The working principle of region growing is 
based on the growth of regions from initial points 
called seeds. The algorithm iteratively evaluates 
adjacent points to the seeds and grows the region 
based on similarity. It has been widely used in 
literature for image segmentation and for 
segmenting planar structures in point clouds 
(Sakamoto et al., 2020). Pérez-Sinticala et al. 
(2019) enhanced a hybrid method based on region 
growing algorithm and primitive fitting by Sample 
Consensus for segmenting the front wall and 
rooftop. However, it is the least suitable for 
segmenting complex and articulated point clouds. 
Three main limitations are recognized due to 
(Kang et al., 2020): (1) the erroneous selection of 
initial seed points, (2) the presence of numerous 
parameter settings, and (3) the frequent 
occurrence of over-segmentation or under- 
segmentation issues. 

Model-fitting algorithms assist in identifying 
correspondences within the point cloud 
concerning geometric primitives (planes, spheres, 
cylinders, etc.). Among these, the most prevalent is 
the Hough Transform (HT) (Duda & Hart, 1972), 
and Random Sample Consensus (RANSAC) 
(Fischler & Bolles, 1981). HT was initially applied 
to point clouds for facilitating the identification of 
roof faces. Subsequently, its methodology was 
broadened to encompass the extraction of 
additional 3D geometric structures such as 
cylinders and spheres (Rabbani & Heuvel, 2005). 
The RANSAC algorithm was originally introduced 
by Fischler and Bolles for image detection 
purposes. Schnabel et al. (2007) later extended its 
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application to the detection of fundamental 
shapes, including cones, spheres, cylinders, and 
planes, within 3D point clouds. 

Notable extensions of RANSAC are Maximum 
Likelihood Estimation SAmple and Consensus, M- 
estimator SAmple and Consensus, and Progressive 
Sample and Consensus (Grilli et al., 2017). 

In recent investigation applied to CH, the 
effectiveness of RANSAC on point cloud has been 
tested for the extraction of geometric primitives of 
architectural components, such as those of a Dorik 
Greek temple (Kyruakaki-Grammatikaki et al., 
2022), or different types of masonry vaults (Buldo 
et al., 2023). 

However, region growing and model fitting 
algorithms facilitate the subdivision of point 
clouds into homogeneous regions in less complex 
datasets. In the CH domain, however, the 
complexity and irregularity of shapes necessitate 
more flexible methods. Furthermore, the 
classification of segmented points remains a 
manual task and is entrusted to the operator. 

Machine Learning (ML) and Deep Learning 
techniques have greatly streamlined the 
interpretation of digital data, semantic structure, 
and object identification (Yang et al., 2023). At the 
core of ML lies the concept that systems can 
acquire knowledge from data, autonomously 
recognize patterns, and make decisions with 
limited human intervention. In the analysis of 
point clouds using ML, the interpretation of each 
individual observation (element) relies solely on 
its correlation with others. Therefore, the basic 
problem of ML consists in finding the clustering 
method, namely to find homogeneous groups in a 
given dataset. Each group is called “cluster” and 
can be defined as a region in which there are some 
similarities and differences from the others. The 
ML approach involves data preprocessing, feature 
extraction, model training, evaluation, and 
classification using the trained model. Artificial 
features of point clouds fall into three categories: 
statistical features (density, elevation difference, 
elevation, etc), histogram-based features (mean, 
standard deviation, etc), and geometric features 
(linearity, planarity, sphericity, etc.) Commonly 
used classifiers include Support Vector Machine, 
Random Forest, and Parsimonious Bayes. 
Although there are diverse classifiers to choose 
from, the selection typically hinges on the 
particular problem at hand and its computational 
requirements. Random Forest classifiers, favored 
for their equilibrium between precision and 

computational efficiency, are frequently utilized in 
tasks involving the classification of point clouds. 
Indeed, in several works examined in the literature 
applied to historical buildings and temples 
distributed across European territories, the 
Random Forest classifier combined with the study 
of geometric features is the most experimented 
and utilized. This is because it enables obtaining 
appreciable results in the identification activities 
of predetermined categories of architectural 
elements (such as columns, bases, entablatures, 
vaults, etc.) through a training set, (Grilli et al., 
2019a; Pepe et al., 2022), sometimes also through 
statistical features (Grilli & Remondino, 2019). 

2.2 Modelling phase 

The creation of three-dimensional surfaces or 
meshes from point clouds is a widely studied topic 
in the CH domain. Obtaining a three- dimensional 
model of an object from images or laser data opens 
up many possibilities in various sectors, not only 
in engineering and architecture (Alqudah, 2014). 
For this reason, researchers have tested various 
methodologies for surface reconstruction. Some of 
the most commonly used methods, as analyzed in 
the research of Khatamian (2016) and Sharma 
(2023), include the Alpha Shape algorithm 
(Edelsbrunner & Mucke, 1994), Ball-Pivoting 
(Bernardini et al., 1999), and Poisson Surface 
Reconstruction algorithm (Kazhdan et al., 2006). 
The Alpha Shape algorithm uses a disk to intercept 
the points of a cloud and create polygons 
consisting of triangular faces. The Ball-Pivoting 
algorithm is based on the use of a virtual sphere 
(ball) with a user-defined radius, which is moved 
over the point cloud determining the vertices of 
the triangles that will constitute the mesh (Digne, 
2014). The Poisson Surface Reconstruction 
algorithm, on the other hand, identifies the faces of 
an object's surface using a vector field (Bolitho et 
al., 2009). In the realm of CH and its valorization, 
the use of 3D models composed of surfaces has 
become increasingly significant, especially for the 
documentation and representation of more 
complex architectural elements (Bolognesi & 
Manfredi, 2024) Furthermore, depending on the 
type of representation desired, meshes of varying 
quality can be produced and utilized to optimize 
file management and processing times (Liang et al., 
2023). This can be achieved through the utilization 
of previously introduced Surface Reconstruction 
(SR) algorithms, which provide a high level of 
control over mesh creation properties. 
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Additionally, these more detailed models can 
enrich simple 3D modeling or even information 
models such as those associated with BIM 
methodology (Yang et al., 2019; Vosselman et al., 
2001). 

3. Methodology 

3.1 3D Data segmentation and classification 

One objective of this work is to semantically 
segment 3D data obtained during the survey, 

isolating morphological units to streamline 3D 
modeling tasks. This is achieved by leveraging the 
semantic description of its components through 
classification based on types of constructive 
elements from the ontological taxonomy of the Art 
& Architecture Thesaurus of the Getty Research 
Institute. This approach is chosen due to its 
alignment with the principles of classical 
architecture and its applicability across a broad 
temporal range. In the original point cloud, the 
categories of elements shown in Fig. 1 were 
distinguished. 

 

Fig. 1 Taxonomy of architectural elements in the adopted dataset 

 
The point cloud was segmented by combining the 
use of model-based algorithms (such as RANSAC) 
for regular and planar architectural elements, and 
Machine Learning (Random Forest) for serial and 
more complex ones. The wall facings, the floor, 
and the vaults of the side naves were segmented 
using RANSAC. 
The process involves a recursive comparison of 
geometric primitives (plane, cone, cylinder, 
sphere, torus) with real ones, which stops with 
the extraction of the set of points that best 
approximates the preselected shape. In this 
context, RANSAC was executed using the 
CloudCompare software (Girardeau-Montau, 
2020), choosing planes and cylinders as reference 

primitives. A minimum sampling radius for the 
cylinder was chosen based on the geometry of the 
smallest element to be extracted. In this context, 
the half-light of the vault. (1,2-1,5m). For the 
portion of the point cloud related to the central 
nave, a Machine Learning method, Random Forest 
in CloudCompare via the 3DMASC plugin (Letard 
et al., 2024), was chosen because machine 
learning improves the segmentation process by 
automating classification based on learned 
models, especially in the case of datasets 
containing serial elements, as in this context 
where columns, trusses, and decorative features 
are recurring elements. The use of Random Forest 
in 3DMASC allows for the management of 
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multidimensional data and sets of different 
features (RGB, intensity, number of returns, 
planarity, linearity, sphericity, etc.). 

Segmentation was initiated using the multi- 
level feature detection method proposed by 
(Dimitrov & Golparvar-Fard, 2015) following five 
main phases: (a) selection of point neighborhoods 
based on a reference radius, (b) extraction of 
geometric features on the entire dataset, (c) 
selection of the most performing features for 
architectural component detection, (d) manual 
annotation, and finally, (e) classification (Grilli et 
al., 2019b). 

One crucial aspect concerns delineating 

neighborhoods for individual points within a 3D 
point cloud. Different approaches, such as 
utilizing spherical or cylindrical neighborhoods, 
either separately or in combination, have been 
utilized. The selection of neighborhood type and 
the calibration of the scale parameter, whether 
based on prior knowledge or a data-driven 
methodology, can profoundly influence the 
outcomes of classification tasks. 

For this purpose, the selection of the spherical 
neighborhood radius was carefully calibrated in 
relation to the sizes of the objects to be identified. 
For example, the average radius of the tori 
composing the base of the columns is 
approximately 0.04 meters.

Linearity Planarity Sphericity Omnivariance 

  

 

 

Anisotropy Eigenentropy Sum of λs Verticality 

    

Fig. 2  Geometric features extracted in CloudCompare 

 
Once neighborhoods are established, the 

extraction of features (radiometric, geometric, or 
spectral) becomes the next step (Dimitrov & 
Golparvar-Fard, 2015; Weinmann et al., 2017). 
These features capture the spatial arrangements of 
neighboring points and provide critical 
information for classification. In this paper, 
geometric features have been used, based on 
eigenvalues λ1, λ2, λ3, as 3D shape descriptors 
extracted from the covariance matrix as described 
in (Blomley et al., 2014):  

• 𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 =    
𝜆1− 𝜆2

𝜆1
 

• 𝑃𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 =    
𝜆2− 𝜆3

𝜆1
 

• 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =       
𝜆3

𝜆1
         

• 𝑂𝑚𝑛𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =     √𝜆1 𝜆2 𝜆3
3

 

• 𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 =   
𝜆1− 𝜆3

𝜆1
 

• 𝐸𝑖𝑔𝑒𝑛𝑒𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝜆𝑖 ln (𝜆𝑖)3
𝑖=1  

• 𝑆𝑢𝑚 𝑜𝑓 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  =   ∑ 𝜆𝑖
3
𝑖=1  

In addition to geometric features, parameters 
such as verticality and point height in the point 
cloud (Z coordinate) were also considered. 

The choice of features is crucial, as it directly 
affects the classifier's ability to differentiate 
between classes. Furthermore, it's crucial not to 
disregard the significance of individual features, as 
not all hold equal importance for classification 
purposes. A range of methods, such as filter-based 
techniques, are employed to assess feature 
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relevance, aiding in the identification of the most 
critical features for the given task. These 
techniques analyze correlations, statistical 
variances, information gain, and other criteria to 
prioritize features based on their relevance.  

From the analysis of geometric characteristics 
performed in CloudCompare (Fig. 2), the following 
emerges: 

a) Verticality and Linearity are the features 
that best distinguish the constructive elements, 
highlighting the vertical trend of shafts, capitals, 
and the horizontal trend of vaults and arches; 

b) The curvature of the arches was better 
described by Surface Variation, Sphericity, and 
Omnivariance; 

c) Sum of Eigenvalues, Eigentropy, and 
Anisotropy yielded less significant results. 

 
Fig. 3 Training set of the central nave 

Random Forest, in 3DMASC, has been applied 
on the remain portion of the dataset of the central 
naves composed of 38,643,593 points. A part of 
this portion was taken as the training set (Fig. 3), 
consisting of 10.453.976 points where ten 
semantic classes of elements were distinguished 
(wall, corbel, rafter, tie beam, molding, arch, 
capital, shaft, base, basement). The remaining part 
of the dataset from the central nave was used to 
test and validate the training results using the 
precision metrics described in section 3.1.1. 

3.1.1 Validation Test 

Correct and incorrect predictions are tallied 
and categorized by class within a confusion matrix 

which is a specialized table format for visualizing 
algorithm performance. Each row denotes 
instances in the actual class (ground truth), and 
each column represents instances in a predicted 
class. Confusion matrix is not a direct performance 
measure; the accuracy metrics rely on the data 
within the confusion matrix, that are: 

Precision is the ratio of positive observations 
correctly predicted to the total positive 
observations predicted.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                       (1)  

Accuracy refers to the ratio of correctly 
classified data to the total number of points. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                           (2) 

Recall is the ratio of positive observations to 
all observations in the actual class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                (3) 

F1 Score is the weighted average of 
Precision and Recall.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                        (4) 

TP = true positive, TN = true negative, 

FP = false positive, FN= false negative. 

3.2 Mesh optimization  

One of the main challenges in computer 
graphics related to digital documentation of 
Cultural Heritage is the efficient management of 
3D data to represent complex objects in an 
optimized and computationally manageable 
manner. In this context, an experiment was 
conducted on 3D reconstruction defined by 
polygonal meshes, employing an approach 
developed using three well-known algorithms – 
Alpha Shape, Ball-Pivoting, and Poisson Surface 
Reconstruction – within a Python environment. 

Starting from individual regions of previously 
segmented and classified point clouds, the aim 
was to enable the creation of representations that 
can be reusable for subsequent developments, 
such as Historic Building Information Modeling 
(HBIM), by defining meshes for each implemented 
algorithm with varying levels of detail (LOD), from 
the lowest to the highest level. 

As a case study, a column representing the 
main nave of the church was considered, 
semantically divided into various portions such as 
basement, base, shaft, and capital. 
Regarding the first mentioned algorithm, the 
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Alpha Shape, a set of three-dimensional points is 
represented by a polygonal structure called 'alpha 
shape', constructed using disks with radii 
inversely proportional to a parameter alpha (α) 
which controls the algorithm's sensitivity to point 
distribution (Crisan et al., 2024). This structure 
approximates the global shape of the point set by 
including points lying within these disks while 
excluding those outsides. The variation of alpha 
modifies the radius, the complexity of the 
generated shape, and hence the detail of the 
resulting mesh: smaller α values result in disks 
with larger radii and include a greater number of 
points, while larger α values determine a greater 
approximation of the shape and a decrease in 
detail. Therefore, an approach based on LOD 
subdivision was defined based on the search for 
different alpha values. 

Starting from the set of segmented and 
subsampled point clouds at 3 mm, the research 
focused on determining α parameter while 
considering the local densities of points within the 
three-dimensional dataset. The density of a point, 
in this regard, was considered as the number of 
surrounding points within a certain predefined 
radius; therefore, calculating local densities is an 
operation critical for understanding the spatial 
distribution of points in the cloud. This definition 
implies that densely clustered points will have 
higher density values compared to isolated or 
scattered points. 

To calculate local densities, the K-d Tree 
algorithm was employed, which enables efficient 

search for the nearest neighbors of each point in 
the cloud. In practice, for each point, a set of 
surrounding points within a predefined radius is 
determined. To establish the search radius, the 
decision was made to utilize the average distance 
between the nearest points in the cloud, in order 
to provide a reasonable measure of the spatial 
scale of the data. Once the search radius is 
determined, the local search for neighbors is 
performed, and the number of points found within 
this radius represents the local density of the 
point.  

The three alpha values used, which were 
computed proportionally to the local densities, are 
respectively αLOD1 considered as the inverse of the 

minimum density, αLOD2 the inverse of the average 

density and αLOD3 the inverse of the maximum 
density. These alpha values are then used in the 
Alpha Shape algorithm to generate three meshes 
with different detail sensitivities, adapted to the 
distribution of points in the three- dimensional 
cloud.  

Additionally, an extra LOD (αLOD4) was 
considered by defining the parameter α as the 
maximum distance between points, essentially 
considering the smallest possible radius to define 
the shape of the disks in the algorithm. This 
decision was made to maximize sensitivity to 
details in surface reconstruction. The definition of 
the adopted parameters, along with their 
respective values, is summarized in Table 1.

Tab. 1: Alpha parameter for different LODs using Alpha-Shape algorithm 

Alpha Equation Value 

𝜶𝑳𝑶𝑫𝟏 𝛼𝐿𝑂𝐷1 =
1

𝜌
2

=
1

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

Basement 1.000 

Base 1.000 

Shaft 1.000 

Capital 1.000 

𝜶𝑳𝑶𝑫𝟐 𝛼𝐿𝑂𝐷2 =
1

𝜌
2

=
1

𝑚𝑒𝑎𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

Basement 0.533 

Base 0.539 

Shaft 0.550 

Capital 0.530 

𝜶𝑳𝑶𝑫𝟑 𝛼𝐿𝑂𝐷3 =
1

𝜌
3

=
1

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

Basement 0.167 

Base 0.143 

Shaft 0.143 

Capital 0.143 

𝜶𝑳𝑶𝑫𝟒 𝛼𝐿𝑂𝐷4 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Basement 0.023 

Base 0.020 

Shaft 0.012 

Capital 0.013 
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Regarding the utilization of the Ball Pivoting 
algorithm, a random point within the dataset is 
chosen as a starting point for generating a three- 
dimensional mesh. The algorithm employs 
rotating spheres around points in a dataset to 
initialize triangles based on three points. When a 
sphere touches other points in the set, new 
triangles are created. This process continues until 
all points have been explored, generating a 
continuous surface in the form of a triangular 
mesh. 

The parameter of the sphere radius used 
during this process controls the sensitivity to 
details and the computational complexity of the 
algorithm: a smaller radius produces a more 
detailed mesh but is computationally more 
demanding, while a larger radius reduces 
complexity at the expense of detail precision (Saffi 

et al., 2024). 
For this experimentation, a radius was defined 

for each of the three defined LODs, corresponding 
respectively to the minimum, maximum, and 
average distance between the nearest neighbors 
in the point cloud. Additionally, a fourth LOD was 
added, equal to the average density between 
points multiplied by an empirical coefficient 
commonly used in the literature. Indeed, since in 
some regions of the point cloud, the density may 
vary significantly, multiplying the average density 
by a coefficient can help mitigate the effect of 
scattered or irregularly distributed points in the 
point cloud and can improve the algorithm's 
ability to accurately reconstruct surfaces even in 
regions with variable point densities.  

Below are the different radius values adopted 
for 3D reconstruction using the Ball- Pivoting 
algorithm (Table 2). 

Tab.2: Radius parameter for different LODs using Ball-Pivoting algorithm 

 

The third algorithm utilized is Poisson Surface 
Reconstruction, which serves as a method for 
reconstructing smooth and continuous surfaces 
from irregular 3D scanning data, employing an 
implicit meshing approach. This algorithm 
leverages a vector field derived from the 
distribution of points in the point cloud, reflecting 
local variations in point density and correlated 
with the surface gradient. The use of a data 
structure such as the octree optimizes the 
computation of this vector field, influencing the 
resolution and accuracy of the reconstruction. 

The Poisson equation is solved to determine 
the shape of the initial object, enabling the 

generation of a precise mesh that conforms to the 
original points. A key parameter is the ‘depth’ of 
the octree, indicating the maximum number of 
levels of tree subdivision for partitioning 
thethree-dimensional space (Kazhdan et al., 2007; 
Bassier et al., 2020). 

A higher depth value corresponds to a higher 
level of detail in the mesh. The ‘scale’ parameter, 
on the other hand, represents the ratio between 
the maximum distance between two opposite 
points within the sample bounding cube and the 
diameter of this cube. Smaller scale values allow 
for greater precision in surface details but may 
increase computation time and memory 

Radius Equation Value 

𝝆𝑳𝑶𝑫𝟏 𝜌𝐿𝑂𝐷1 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Basement 0.003 
Base 0.003 
Shaft 0.003 
Capital 0.003 

𝝆𝑳𝑶𝑫𝟐 𝜌𝐿𝑂𝐷2 = 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Basement 0.003 
Base 0.003 
Shaft 0.003 
Capital 0.004 

𝝆𝑳𝑶𝑫𝟑 𝜌𝐿𝑂𝐷3 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Basement 0.023 
Base 0.020 
Shaft 0.012 
Capital 0.013 

𝝆𝑳𝑶𝑫𝟒 𝜌𝐿𝑂𝐷4 = 3 ∗ 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Basement 0.010 
Base 0.010 
Shaft 0.010 
Capital 0.011 
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requirements, while larger values have the 
opposite effect. 

In this study, an empirical value of the scale 
parameter, set to 1.1, was chosen for each 
segmented point cloud and for each LOD. Greater 
emphasis was placed on defining the depth 
parameter, which was calculated semi- 
automatically. To this end, a function was initially 
defined to utilize differences between the 
coordinates of adjacent points to calculate the 
Euclidean distances between them, returning the 
average of these distances, representing the 
average distance between points in the cloud. 
Using the average distance as a measure of data 
density, three depth values influencing the detail 
of surface reconstruction were subsequently 

determined. To achieve this, three scale factors 
were defined, namely 0.2, 0.1, 0.05, and 0.03, for 
calculating the depths, computed as the average 
distance multiplied by the respective scale value. 

The calculated depth values were constrained 
to specific intervals to ensure that each 
subsequent level captured more details than the 
previous one, allowing representation of shape 
variations at different spatial scales (Poux et al., 
2020).  

For LOD 1, a depth range of 3-6 was selected, 
for LOD 2 a range of 6-9, for LOD 3 a range of 9-12, 
and for LOD 4 a range greater than 12. In Table 3, 
the parameters used with the Poisson algorithm 
are summarized. 

Tab. 3 Depth and Scale parameters for different LODs using Poisson Surface Reconstruction algorithm 

ELEMENT LOD Scale Depth 

Basement 

LOD 1 1.1 3 
LOD 2 1.1 6 
LOD 3 1.1 9 
LOD 4 1.1 12 

Base 

LOD 1 1.1 3 
LOD 2 1.1 6 
LOD 3 1.1 9 
LOD 4 1.1 12 

Shaft 

LOD 1 1.1 3 
LOD 2 1.1 6 
LOD 3 1.1 12 
LOD 4 1.1 15 

Capital 

LOD 1 1.1 3 
LOD 2 1.1 6 
LOD 3 1.1 9 
LOD 4 1.1 13 

 
4. Test on building elements 

4.1 Initial Dataset 

The workflow was applied to the Romanesque 
Church of Ognissanti in Trani (Italy), dating back 
to the 12th century (Fig. 4).  
The building, of reduced dimensions, is 
characterized by a porticoed entrance and a 
rectangular hall divided into three naves ending 
with three semicircular apses. The naves are 
separated by twelve composite granite columns 
on which the double lancet arches are supported. 
The central nave is covered by a system of wooden 
trusses while the side naves are topped by pointed 
arch vaults. 

The survey was conducted using the Faro 
Focus 3D 120 CAM2 Laser Scanner which has a 
range of up to 120 meters, and defines a 

systematic measurement error (ranging error) 
between 10- 25 m of ±2 mm, and a resolution 
camera of 70- megapixel. A total of 55 scans were 
performed (19 on the external perimeter and 36 
inside), aligned and post-processed in Recap Pro® 
to obtain an overall point cloud of 307,148,542 
points.  

The workflow developed in this contribution 
was applied to a portion of the point cloud. 
External environments and the entrance portico 
were excluded, focusing solely on the indoor 
environment. Previously, furnishing elements 
(benches, light fixtures, statues, etc.) were 
removed.  

Additionally, in CloudCompare, duplicate 
points were eliminated, and noise was removed 
through the SOR filter, Resulting in a final dataset 
of 77.658.165 points. 
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Fig. 4 Internal view of Ognissanti Church (XII century), 
Trani, Italy 

4.2 Dataset segmentation and classification 

The initial dataset segmentation saw the use 
of two algorithms RANSAC and Random Forest. 
RANSAC has made it possible to locate and isolate 
the simplest architectural elements such as walls, 
vaults, and floors (Fig. 5). The result of the 
segmentation has allowed to optimize in terms of 
time, moreover, the next operation, that is the 
extraction of the dataset to submit to Random 
Forest. 

The results of Random Forest segmentation 
were evaluated using the precision metrics (1), 
(2), (3), (4) described in paragraph 3.1.1 visible in 
the Table 4. For Random Forest to be effective and 
generalize to new data, the quality of the training 
set is crucial. 

The diversity, representativeness, and size 
should be sufficient to capture variations without 
overfitting. Appreciable results have been 
achieved due to the seriality and repetition of the 
constructive elements in the examined dataset, 
with a total average of 74,31% (1), 66,39% (2), 
85,41% (3), and 74,27% (4). 

In the context of point cloud applications, the 
Random Forest algorithm effectively manages the 
scale of segmentation details and semantic 
classification allowing flexibility in the selection of 
geometric characteristics.  
 

 

Fig. 5 Wall, floor, and vaults segmented via RANSAC 

The classes whose segmentation has had 
better results are those represented by elements 
repeated in the dataset in a more or less 
homogeneous way such as "Wall", "Arch", 
"Shaft", and "Base". 

Fig. 6 Central nave segmented through Random Forest 

Even theclasses concerning helmets in trusses 
(corbel, rafter, tie beam) have been correctly 
classified, however the result of the segmentation 
was conditioned by an initial cloud full of noise 
due to the distance of the elements from the laser 
scanner in the process of acquisition and the 

file:///D:/Università/Pubblicazioni/In%20Elaborazione/2024_SCIRES-IT/13814-28151-2-SP.docx%23_bookmark3
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proximity to glass materials present on the 
neighboring windows. The capitals and basement 
were segmented elements less precisely than the 

rest due to their heterogeneity in the initial 
dataset (Fig. 6).

Tab. 4: Random Forest application performance 

 Wall Corbel Rafter Tie 
beam 

Molding Arch Capital Shaft Base Baseme 
nt 

Accuracy 92,41% 62,14% 65,33% 51,70% 67,20% 81,68% 48,90% 88,41% 86,67% 58,70% 

Precision 99,90% 49,20% 44,58% 43,68% 49,20% 85,38% 32,19% 87,70% 72,13% 59,90% 

Recall 98,35% 61,63% 80,45% 80,50% 73,63% 92,17% 54,94% 94,08% 80,00% 58,38% 

F1 95,52% 65,20% 63,37% 57,37% 65,20% 89,1% 48,08% 90,78% 83,81% 41,13% 

 

4.3 Mesh optimization results 

To ensure accurate control over the geometric 
conformity of the meshes in relation to the 
starting point cloud, a Cloud-to-Mesh (C2M) 
comparison was performed using CloudCompare 
software. This process facilitated the 

identification of any measured discrepancies in 
meters, accompanied by a statistical evaluation 
through the calculation of the standard deviation 
using a Gaussian distribution model (Table 5). A 
lower standard deviation value indicates greater 
conformity of the mesh to the point cloud and 
therefore better definition of details.

Tab. 5 Standard Deviation values between point cloud and mesh 

ELEMENT LOD 
Standard Deviation 

Alpha Shape Ball-Pivoting Poisson 

 
Basement 

LOD 1 0.006122 0.000944 0.010584 
LOD 2 0.005657 0.001061 0.002235 
LOD 3 0.003758 0.000596 0.001573 
LOD 4 0.001852 0.002380 0.001571 

 
Base 

LOD 1 0.021119 0.000964 0.014638 
LOD 2 0.019206 0.001114 0.002449 
LOD 3 0.005815 0.000478 0.001782 
LOD 4 0.001632 0.002501 0.001778 

 
Shaft 

LOD 1 0.002628 0.000413 0.034736 
LOD 2 0.002267 0.000425 0.001752 
LOD 3 0.001422 0.001272 0.000860 
LOD 4 0.000350 0.001187 0.000860 

Capital 
LOD 1 0.025169 0.001169 0.025429 
LOD 2 0.022882 0.001157 0.003028 

 

In general, the standard deviations are 
relatively high for lower LODs and tend to 
decrease as LOD increases for most architectural 
elements when using the Alpha Shape algorithm 
(). This suggests that the Alpha Shape algorithm 
may initially produce meshes with lower 
definition but improves as the level of detail is 
increased. 

Regarding the results obtained with the Ball- 
Pivoting algorithm, an opposite trend to the first 
approach is observed (Fig. 8). The standard 
deviations are relatively low for lower LODs and 
tend to increase as LOD increases for most 
architectural elements. The variation in standard 
deviations is influenced by the mesh conformity to 
the point cloud and the presence of holes or gaps, 

especially in the first two LODs. As LOD increases, 
the algorithm might overly fit the mesh to the 
input data, causing overfitting and generating 
non-significant details, albeit with a continuous 
surface.  

The Poisson Surface Reconstruction algorithm 
demonstrates better consistency in results with 
standard deviations often lower than those of 
other algorithms, especially for higher LODs. This 
suggests that the Poisson algorithm produces 
meshes with more accurate definition, 
particularly when using higher depth levels (Fig. 
9). 

The deduced results can also be evaluated 
qualitatively, focusing on the most representative 
and geometrically complex element of the 
column, namely the capital. 

file:///D:/Università/Pubblicazioni/In%20Elaborazione/2024_SCIRES-IT/13814-28151-2-SP.docx%23_bookmark4
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Fig. 7 Multi-LOD mesh visualization with the Alpha Shape algorithm (top) and Cloud-to-Mesh distance (bottom) 

 

 

 
 

Fig. 8 Multi-LOD mesh visualization with the Ball-Pivoting algorithm (top) and Cloud-to-Mesh distance (bottom) 
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Fig. 9 Multi-LOD mesh visualization with the Poisson Surface Reconstruction algorithm (top) and Cloud-to-Mesh 

distance (bottom) 

 

Examining the meshes obtained with different 
levels of detail (LOD) for each algorithm used, it's 
evident that increasing the LOD improves the 
definition of the mesh.  Particularly, when 
comparing the highly approximated geometries of 
Alpha Shape and the presence of gaps in the Ball- 
Pivoting algorithm, the approach adopted with 
the Poisson Surface Reconstruction algorithm 
appears to be the most robust in this context. 

It is noteworthy that augmenting the level of 
detail (LOD) leads to a concomitant escalation in 
the number of facets utilized for mesh 
reconstruction, owing to the imperative of 
deploying a greater number of triangles to 
faithfully depict the object's surface 
characteristics. Consequently, this engenders an 
amplification in the volumetric representation of 
the mesh file, necessitating a commensurate 
increase in storage capacity to accommodate the 
augmented geometric intricacies. Nonetheless, an 
intriguing finding pertains to the discernible 
reduction in triangulation complexity observed 
within detail levels 3 (LOD3) and 4 (LOD4), as 
facilitated by the Ball-Pivoting algorithm, wherein 
the imposition of radius values equivalent to the 
maximal and threefold average distances proves 
instrumental. This strategic adjustment affords a 
dual benefit of optimizing mesh reconstruction 
processes while concurrently alleviating 
computational overhead, thereby manifesting 
qualitative enhancements. Furthermore, 

notwithstanding the computational superiority of 
LOD 4 achieved through the Poisson algorithm 
vis-à-vis LOD3, its incremental computational 
efficacy remains less pronounced compared to 
antecedent LOD iterations. To address this issue 
and optimize the computational aspect and 
geometry of the  mesh,  especially  in  HBIM 
(Heritage Building Information Modeling) 
contexts (Lanzara et al., 2022) a semi-automated 
process has been developed for managing the 
mesh with the highest LOD derived from Poisson 
Surface Reconstruction, using a VPL script in 
Dynamo® ( Fig. 10).  

The process begins with importing the mesh 
using the Mesh.ImportFile function and offers the 
option to customize the desired level of detail, in 
this case opting for the highest level. 
Subsequently, operations are performed to 
control the number of polygons in the mesh using 
Mesh.Reduce and to optimize the distribution of 
triangles through Mesh.Remesh. Additionally, the 
representation scale of the mesh can be adjusted 
using Mesh.Scale. 

After completing the mesh processing 
operations, it is converted into a BIM object using 
DirectShape.by Mesh. This step allows integrating 
the mesh into a BIM model, where a range of 
available parameters related to the specific family 
of the object can be assigned. These parameters 
may include technical information, such as the 
material used for construction, structural 

file:///D:/Università/Pubblicazioni/In%20Elaborazione/2024_SCIRES-IT/13814-28151-2-SP.docx%23_bookmark7
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properties, performance, or historical 
information. This level of customization enables 
adapting the BIM object to the specific project 

requirements, ensuring an accurate and 
comprehensive representation of data within the 
BIM model context.

 

 

Fig. 10 Mesh optimization via VPL script in Dynamo® 

 
4. Conclusions and future works 

In this document, a methodology for managing 
complex datasets in the field of historical building 
has been illustrated. Starting from the laser 
scanner survey, a semi-automatic segmentation 
and classification was carried out thanks to the use 
of model-based algorithms (RANSAC) and 
Machine Learning (Random Forest). Then a 
comparison was made between three meshing 
algorithms Alpha Shape, Ball- Pivoting and Poisson 
Surface Reconstruction to evaluate what best 
allows to relate the level of detail with the 
dimensional data required by the needs of 
representation. RANSAC algorithm allowed to 
isolate the simplest architectural elements (walls, 
floors and vaults). For more complex elements 
(columns, trusses, arches, etc.) it was necessary to 
use the Random Forest algorithm. The segmented 
and classified columns were meshed. From the 

analysis of the reconstruction of the meshes of 
segmented points related to a representative 
column of the church, it is deduced that the 
Poisson Surface Reconstruction approach offers 
better consistency in results, especially with 
higher LOD, while Alpha Shape and Ball-Pivoting 
show variations in mesh quality depending on the 
LOD. Increasing the LOD improves the mesh 
definition but also increases the file size. 
Therefore, a semi- automated process was created 
to manage the mesh with maximum LOD, 
optimizing the computational aspect and the 
geometry of the mesh in HBIM. The methodology 
has shown the possibility of saving time modeling 
complex objects, since the modeling phase is 
replaced by a semi-automatic process to return 
objects. The implemented solution can be easily 
expanded and replicated to manage different 
architectural elements. 
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