
SCIentific RESearch and Information Technology 
Ricerca Scientifica e Tecnologie dell'Informazione  
Vol 14, Special Issue (2024), 53-70  
e-ISSN 2239-4303, DOI 10.2423/i22394303v14Sp53 
Open access article licensed under CC-BY-NC-ND 
CASPUR-CIBER Publishing, http://www.sciresit.it 

ARTIFICIAL INTELLIGENCE AND BIODIVERSITY  

Giorgio De Nunzio*, Rocco Rizzo** 

*Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento - Lecce, Italy, and INFN (Istituto Nazionale di Fisica 
Nucleare) branch of Lecce, Italy. 

**Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento - Lecce, Italy 

Abstract 

Biodiversity is essential for ecosystem balance, yet it faces growing threats from human activities and climate change. To 
address these challenges, Artificial Intelligence (AI) is emerging as a powerful tool for promoting biodiversity conservation 
and sustainable practices. This article examines how AI technologies are being combined with the Internet of Things to 
improve the identification of species in danger, protect habitats, and optimize resource management. It also explores real-
world applications of AI in areas such as wildlife protection, environmental monitoring, and precision agriculture, with a 
focus on the shift from traditional farming methods to more sustainable and regenerative approaches in Agriculture 3.0 to 
5.0. The article also highlights obstacles such as limited accessibility for smaller organizations. Overall, this work underscores 
the growing impact of AI in fostering ecological preservation and advancing sustainability efforts. 
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1. Introduction: Biodiversity 

Biodiversity, the variety of life on Earth, is 
essential for keeping ecosystems in balance and 
supporting human survival. However, protecting it 
has become increasingly challenging. In recent 
years, Artificial Intelligence (AI) has proven to be a 
game-changer, offering innovative ways to 
address these challenges.  

AI’s ability to analyze massive datasets and 
uncover hidden patterns makes it an invaluable 
tool for biodiversity conservation. From 
monitoring ecosystems to finding new solutions 
for preserving species, AI can make a difference.  

This article takes a closer look at how AI is 
helping to protect biodiversity, focusing on both 
the scientific breakthroughs and practical 
applications that are shaping the future of 
conservation.  

Following this introduction, Section 2 provides 
a simple overview of some aspects of AI. Section 3 
reviews the current scientific literature to explore 
how researchers are leveraging AI to address 
biodiversity-related challenges. It then focuses on 
commercial AI systems specifically designed for 
biodiversity applications, highlighting their 
innovative features and real-world impact. 
Section 4 discusses policy initiatives related to 

biodiversity and sustainability. The article 
concludes by reflecting on the broader 
implications of these advancements, as well as the 
opportunities and challenges of integrating AI into 
biodiversity initiatives. 

Through this exploration, we aim to provide a 
comprehensive overview of the intersection 
between AI and biodiversity, emphasizing the 
importance of leveraging technological innovation 
to ensure a sustainable future for all life on Earth. 

Selected content from this paper was 
presented at the workshop organized by CEIT 
(Centro Euromediterraneo di Innovazione 
Tecnologica per i Beni Culturali e Ambientali e la 
Biomedicina, http://www.ceit-otranto.it/) of the 
University of Salento (Lecce, Italy) and Otranto 
City, held at Otranto Castle on May 24–25, 2024, on 
the International Day for Biodiversity 2024. 

1.1 Biodiversity and sustainability 

Biodiversity, or biological diversity, is a term 
coined in 1988 to describe the richness and variety 
of life on Earth. It encompasses the millions of 
species of plants, animals, and microorganisms, 
the genetic material they contain, and the intricate 
ecosystems they create within the biosphere. This 
incredible diversity plays a vital role in 
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maintaining the delicate balance of our planet, 
performing essential functions such as climate 
regulation (especially through CO2 absorption), air 
and water purification, and the production of food 
and other critical resources. 

Biodiversity forms the foundation of life as we 
know it, creating an equilibrium that is both 
fundamental and fragile. However, this 
equilibrium has been severely disrupted in recent 
decades due to unsustainable activities. 
Deforestation, pollution, and probably 
anthropogenic climate changes are among the 
primary culprits that have led to a significant 
reduction in biological diversity. 

To counter these alarming trends, 
sustainability has emerged as the key approach to 
preserving biodiversity and ensuring a healthy, 
thriving environment for current and future 
generations. Sustainable actions include reducing 
pollution, conserving natural resources, adopting 
responsible agricultural and industrial practices, 
and protecting ecosystems from further 
degradation. 

The preservation of biodiversity is not merely 
an environmental concern; it is an essential 
strategy for maintaining the resilience of our 
planet and the well-being of humanity. By 
fostering sustainable practices, we can work 
towards a more balanced relationship with nature, 
safeguarding the rich tapestry of life that supports 
us all. 

2. What is Artificial Intelligence? 

AI can be broadly defined as the simulation of 
human intelligence in machines. It enables them to 
perform tasks that require cognitive skills 
comparable to those of humans, such as learning, 
reasoning, and problem-solving. In recent years, AI 
has emerged as a powerful tool in various fields, 
including the preservation and safeguarding of 
biodiversity. By leveraging advanced technologies 
like data analysis, machine learning algorithms, 
sensors, drones, and intelligent devices, AI offers 
innovative solutions to address pressing 
environmental challenges. 

AI processes data through sophisticated 
algorithms to deliver valuable outputs such as 
diagnostics, detailed insights, alerts, and 
recommendations. Moreover, it facilitates 
automated actions that optimize and accelerate 
interventions. These capabilities are particularly 
critical for biodiversity preservation, where timely 
and data-driven decision-making can make a 

significant difference in mitigating threats to 
ecosystems and species. 

By harnessing the power of AI, it becomes 
possible to not only monitor and analyze 
environmental changes but also to implement 
proactive strategies for conservation. This 
technological approach offers the potential to 
enhance our understanding of complex ecological 
systems and to act with greater precision and 
effectiveness in protecting the natural world. 

2.1 Different types of Artificial Intelligence 

AI encompasses various approaches and 
techniques, each suited for specific applications 
and challenges. Among the most notable are 
Machine Learning (ML), Deep Learning (DL), and 
Generative AI (GAI). These diverse AI technologies 
provide the foundation for transformative tools 
and strategies that can be applied to complex 
environmental and biodiversity challenges, paving 
the way for more efficient, innovative, and 
impactful solutions. 

2.2 Machine Learning and Deep Learning 

ML involves creating models that learn from 
data to make predictions or decisions by 
identifying patterns within datasets. These models 
rely on algorithms such as artificial neural 
networks or binary decision trees and require 
measurable or calculated variables that act as 
“discriminators” (referred to as “features”). By 
analyzing these features, ML models can make 
informed decisions, demonstrating their 
adaptability to changing inputs without requiring 
explicit instructions. 

In ML, the task of identifying relevant features 
from data, such as images, relies heavily on the 
expertise of the programmer, usually supported by 
a domain expert. The programmer must determine 
which specific measurements or characteristics 
should be extracted from the images to enable 
accurate classification of the object depicted. For 
instance, when classifying a diseased leaf or an 
insect, the programmer might define features such 
as texture, color, or shape to differentiate one 
category from another. This process, known as 
feature engineering, requires a deep 
understanding of both the domain and the dataset 
to ensure the selected features effectively capture 
the variability needed for classification. 

DL is a subset of ML, distinguished by its ability 
to identify discriminative features automatically, 
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eliminating the need for preliminary calculations. 
Through iterative training, the system learns to 
discern which patterns or characteristics in the 
dataset are most useful for distinguishing one class 
from another, such as identifying whether a leaf is 
healthy or diseased. These automatically 
determined features, often referred to as learned 
features, emerge from the hierarchical structure of 
DL models, such as neural networks, which 
progressively refine their understanding of the 
data from low-level patterns to high-level 
concepts. This shift from manual to automated 
feature extraction represents one of the key 
advantages of DL, enabling it to excel in tasks 
involving complex data like images, audio, and 
video, where identifying the optimal features is 
challenging or even infeasible for human 
programmers. These capabilities make DL 
essential for analyzing biodiversity data, where 
insights often depend on interpreting visual or 
complex ecological patterns. 

ML and DL share a common foundation in 
“supervised learning”, where models are trained 
on labeled datasets. In this approach, the 
algorithm learns to map inputs to desired outputs 
(classes or categories) by minimizing errors 
during training. In this way, ML/DL systems 
become able to make predictions or classifications 
about new, unseen data. For example, in image 
classification, both ML/DL systems are provided 
with labeled images and iteratively adjust their 
internal parameters to correctly identify 
categories. At the heart of this process lies the 
classifier, a key component of the ML/DL system 
that is responsible for distinguishing between 
different categories within the data. 

The classifier achieves this by calculating the 
placement of decision boundaries—imaginary 
lines that divide the data space into distinct 
regions based on the characteristics of the labeled 
examples provided during training (the “learning 
set”). Each point in the dataset corresponds to a 
specific example, such as a flower with features 
such as petal length or sepal width. By analyzing 
these features, the classifier determines the 
optimal separation boundaries to distinguish 
between categories (e.g., different flower species). 

Once these boundaries are established, the ML 
system can classify new, unlabeled data by 
identifying the region of the data space in which it 
falls. For instance, when presented with a new 
flower, the classifier evaluates its position on the 
graph relative to the decision boundaries and 

assigns it to the most likely category. While this 
process is highly effective, it is not infallible and 
operates within a margin of error, particularly 
when data points are ambiguous or overlap 
between categories. 

This foundational concept of supervised ML is 
widely applicable, from recognizing handwritten 
digits to identifying patterns in biodiversity 
datasets, enabling actionable insights and 
informed decision-making across numerous 
domains. 

2.3 Generative AI and Large Language Models 

GAI focuses on creating new content based on 
its knowledge base and contextual understanding. 
Unlike traditional predictive models, GAI produces 
entirely new outputs, such as images, text, or 
music. Well-known examples include Large 
Language Models (LLM), which can generate 
coherent and contextually relevant text responses 
to questions. These models are increasingly being 
applied in creative fields, scientific research, and 
environmental monitoring, offering innovative 
solutions to generate actionable insights or 
creative content. 

LLMs are specifically designed to “understand” 
and generate natural language. These models have 
become indispensable tools for handling tasks 
related to natural language processing, such as 
summarizing content, translating text, and 
generating human-like textual responses. 

The training process for LLMs involves 
analyzing vast quantities of text data from diverse 
sources, including books, websites, and journal 
articles. This extensive exposure allows the 
models to learn the structure, patterns, and 
nuances of language. The core mechanism behind 
their functionality lies in their ability to predict the 
next word in a sentence based on the context of the 
preceding words, enabling them to produce 
coherent and contextually appropriate outputs. 

One notable example of an LLM is GPT 
(Generative Pre-trained Transformer), which has 
gained recognition for its ability to generate text 
that closely resembles human communication. 
ChatGPT, a popular chatbot application, is built on 
the GPT framework and demonstrates the 
practical utility of LLMs in creating conversational 
agents capable of engaging in realistic and 
meaningful interactions. 

These capabilities make LLMs powerful tools 
for a range of applications, from simplifying 
complex information to providing language-based 
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support in fields such as education, customer 
service, and environmental monitoring. Their 
ability to process and generate language 
effectively holds significant potential for 
advancing solutions in biodiversity conservation 
and beyond. 

3. How can AI support biodiversity preservation? 

AI holds great potential for enhancing 
biodiversity conservation by addressing critical 
challenges in monitoring, decision-making, and 
intervention. By leveraging advanced tools such as 
sensors and Internet of Things (IoT) connectivity, 
AI can collect and interpret extensive data on 
endangered species, habitats, and meteorological 
conditions. This capability enables informed and 
timely responses to threats to biodiversity. 

One important application of AI is in the 
recognition of animal and plant species. Sensors 
deployed in natural environments—such as video 
cameras or audio recognition devices—use AI to 
monitor at-risk species. This technology plays a 
significant role in protecting biodiversity by 
helping prevent deforestation and the extinction of 
vulnerable species. 

AI also assists in the development of projects 
aimed at improving environmental efficiency. For 
instance, it can help design strategies to enhance 

energy efficiency, reduce greenhouse gas 
emissions, and combat plastic pollution. 

Moreover, AI can optimize production 
processes by improving waste management 
systems and, more broadly, reducing the human 
impact on ecosystems. By addressing these 
challenges, AI offers transformative solutions for 
sustainable biodiversity preservation and the 
protection of our planet's natural resources. 

The role of IoT in biodiversity and 
environmental protection is fundamental. IoT 
represents a network of interconnected physical 
devices and machinery equipped with sensors, 
enabling seamless communication between 
devices, computers, and users via the Internet. 
This technology, integrated with satellites and 
Unmanned Aerial Vehicles (UAV), facilitates 
continuous remote monitoring and control of 
animal health, soil productivity, and pathogen 
spread, unlocking numerous possibilities across 
various sectors, including agriculture and 
environmental conservation (Figure 1). These 
insights are essential for proactive biodiversity 
protection, ensuring early detection of ecological 
imbalances and enabling targeted interventions. 

In agriculture, IoT plays a critical role in 
fostering sustainability. Sensors can monitor soil 
quality, optimize water usage, and track crop 
health, leading to more efficient resource 

 

Fig. 1: Data integration from various sensors or locations helps gain deeper ecological insights. Image courtesy of the U.S. 
Geological Survey, also in Tuia, Kellenberger, Beery, et al. (2022). 
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management and reduced environmental impact. 
By bridging real-time data collection with 
decision-making processes, IoT contributes 
significantly to the reduction of human-induced 
environmental pressures. 

When combined with Artificial Intelligence, 
IoT becomes even more powerful. The data 
collected through IoT sensors can be analyzed by 
AI algorithms to generate actionable insights, such 
as identifying endangered species' habitats, 
predicting climate impacts, or suggesting 
sustainable farming practices. This synergy 
between IoT and AI marks a pivotal step toward 
more intelligent, data-driven biodiversity 
conservation strategies. 

3.1 AI for Biodiversity: insights from scientific 
literature 

The intersection of AI and biodiversity has 
become a thriving area of research, with a growing 
body of scientific literature exploring how 
advanced technologies can contribute to the 
preservation and restoration of ecosystems. AI has 
proven to be a valuable ally in addressing the 
complex challenges of biodiversity conservation, 
offering tools that enable data collection, analysis, 
and intervention at unprecedented scales. 

Scientific studies highlight the application of 
ML and DL techniques in various biodiversity-
related tasks. These include species recognition 
through image and sound analysis, predicting 
habitat loss, and monitoring changes in 
ecosystems over time. Research has also 
demonstrated how AI-powered systems can 
analyze vast datasets to detect patterns and 
trends, providing critical insights into species 
behavior, migration, and the impact of human 
activities on natural environments. 

Moreover, AI has been employed to support 
conservation strategies by creating predictive 
models that inform policy decisions. For instance, 
models trained on environmental and climate data 
can forecast the spread of invasive species or 
identify areas most vulnerable to habitat 
destruction. Such applications underline the 
importance of leveraging AI to develop proactive 
measures for biodiversity preservation. 

In addition, studies emphasize the role of AI in 
enhancing collaboration among researchers and 
practitioners. Platforms that integrate AI tools 
facilitate data sharing and joint analysis, fostering 
a multidisciplinary approach to solving 
biodiversity challenges. The literature thus 

underscores the transformative potential of AI in 
making conservation efforts more effective and 
scalable. By synthesizing findings from this 
extensive body of work, AI offers a powerful 
toolkit for understanding and protecting the 
natural world. The continued exploration of AI 
applications in biodiversity conservation remains 
a vital area of research, poised to address the 
pressing environmental challenges of our time. 

In August, Pescott, Joly, et al. (2020), the 
authors examine the application of newly 
developed AI image classifiers to large social 
media image datasets, evaluating their potential 
for generating new biodiversity observation 
datasets. They analyze biases present both in the 
image datasets and in the performance of AI 
classifiers in making accurate identifications. 
Additionally, the authors propose a checklist of 
key considerations for researchers contemplating 
this approach to data generation. A related topic is 
discussed in Roy, Alison, August, et al. (2024), 
where the authors present a framework for 
automated, image-based monitoring of nocturnal 
insects, emphasizing the potential of sensor 
technologies to standardize and expand insect 
monitoring on a global scale (Figure 2). The system 
includes sensors that attract insects with light, a 
camera for image capture, and a computer for data 
scheduling, storage, and processing. The authors 
discuss the importance of metadata to balance 
ecological data capture with power and storage 
limitations. Given the large volumes of data 
generated, the paper outlines scalable computer 
vision methods for detecting, tracking, and 
classifying insects, emphasizing the need to 
address biases in species occurrence and 
abundance estimates. The authors propose ten 
priorities to advance automated insect monitoring, 
recognizing its critical role in combating 
biodiversity loss caused by global environmental 
threats. 

In Silvestro, Goria, Sterner, et al. (2022), the 
authors address the critical challenge of 
biodiversity conservation amidst the alarming 
threat of extinction faced by over a million species. 
They introduce “Conservation Area Prioritization 
Through Artificial Intelligence” (CAPTAIN), a novel 
framework leveraging reinforcement learning to 
optimize spatial conservation prioritization 
(Figure 3). CAPTAIN demonstrates superior 
performance compared to state-of-the-art 
conservation software, using both simulated and 
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empirical data. The methodology evaluates trade-
offs between costs and biodiversity protection 
benefits, incorporates multiple biodiversity 
metrics, and delivers significantly better outcomes 
under budget constraints. The framework reliably 
meets conservation targets, protects more species 
from extinction, and generates interpretable 
prioritization maps. The study underscores AI's 
transformative potential in supporting sustainable 
ecosystem management in resource-limited and 
rapidly changing environments. 

 

 

Fig. 3: The CAPTAIN reinforcement learning framework. For 
details see Silvestro et al. (2022). License: 

http://creativecommons.org/licenses/by/4.0/. 

 

The work by Tuia, Kellenberger, Beery, et al. 
(2022) explores the growing potential of 
inexpensive and accessible sensors in accelerating 
data acquisition in animal ecology. While these 
technologies enable large-scale ecological studies, 
they highlight the limitations of current processing 
methods, which fail to efficiently transform data 
into actionable insights. The authors propose that 
animal ecologists can leverage large datasets 
generated by modern sensors by integrating ML 
techniques with domain-specific knowledge. This 
integration could enhance ecological models and 
contribute to the development of hybrid modeling 
tools. The paper emphasizes the need for 
interdisciplinary collaboration to ensure the 
quality of new approaches and the training of a 
new generation of data scientists in ecology and 
conservation. 

In Mo, Zohner, Reich, et al. (2023), the authors 
assess the global carbon storage potential of 
forests by combining ground-sourced data with 
satellite-derived approaches. They highlight the 
significant role of forests as carbon sinks, noting 
that anthropogenic land use and climate change 
have reduced their capacity. The study finds a 12% 
difference between ground-based and satellite 
estimates of global forest carbon, indicating 
consistency in predictions despite regional 
variations. The results show that current global 
forest carbon storage is significantly below its 

 

 

 

Fig. 2: Machine learning workflow to analyse moth camera trap data (Roy et al. 2024). License: 
http://creativecommons.org/licenses/by/4.0/). 
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natural potential, with a deficit of 226 Gt (ranging 
from 151–363 Gt). Most of this carbon potential 
(61%, or 139 Gt) is in areas with existing forests, 
where ecosystem protection could allow for 
recovery. The remaining 39% (87 Gt) is found in 
areas where forests have been cleared or 
fragmented. While forests cannot fully replace 
emission reductions, the authors argue that the 
conservation, restoration, and sustainable 
management of forests are crucial for meeting 
global climate and biodiversity targets. 

The paper by Delavaux, Crowther, Zohner, et al. 
(2023), investigates the drivers of non-native tree 
invasions using global tree databases. The authors 
explore how factors such as the phylogenetic and 
functional diversity of native tree communities, 
human pressure, and environmental conditions 
influence the establishment and severity of these 
invasions. The study finds that anthropogenic 
factors are crucial in predicting whether a location 
will be invaded, while native diversity plays a key 
role in determining invasion severity, with higher 
diversity leading to lower severity. Temperature 
and precipitation are identified as strong 
predictors of invasion strategies, with non-native 
species thriving in areas with cold or dry extremes, 
like the native community. However, the authors 
also observe that human activities, particularly 

proximity to shipping ports, can obscure ecological 
patterns, highlighting the complex interplay 
between human drivers and ecological forces in 
shaping tree invasions. 

In Ma, Crowther, Mo, et al. (2023), the authors 
investigate the global variation in tree leaf types 
and the factors influencing this variation, which 
are crucial for understanding their role in 
ecosystem functions like carbon, water, and 
nutrient dynamics. Using ground-sourced forest 
inventory data, they assess the global distribution 
of needle-leaved, broadleaved, evergreen, and 
deciduous trees. The study finds that leaf habit is 
mainly driven by isothermality and soil 
characteristics, while leaf form is influenced by 
temperature. The authors estimate that 38% of 
global tree individuals are needle-leaved 
evergreen, 29% are broadleaved evergreen, 27% 
are broadleaved deciduous, and 5% are needle-
leaved deciduous. Additionally, the paper projects 
that, depending on future emissions pathways, up 
to 34% of forested areas may experience climate 
conditions that could alter their current forest 
types. The findings provide valuable insights into 
the distribution of tree leaf types and biomass, 
with implications for understanding future 
ecosystem functioning and carbon cycling under 
climate change. 

 

Fig. 4: Sampling devices to test soundscapes and metabarcoding for monitoring of restoration success in tropical forests; 
left: sound recorder, right: light trap. From Müller et al. (2023), partial figure, license: 

http://creativecommons.org/licenses/by/4.0/). 
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The paper by Müller, Mitesser, Schaefer, et al. 
(2023) explores tropical forest recovery in 
Ecuador, focusing on both biodiversity and carbon 
sequestration. The authors use bioacoustics and 
metabarcoding (a technique employed to identify 
multiple species within a mixed sample of DNA) to 
assess forest recovery after agricultural use (see 
Figure 4). The study demonstrates that community 
composition of vocalizing vertebrates, rather than 
species richness, best reflects the restoration 
gradient. Two automated measures (the acoustic 
index model and bird community composition 
derived from a Convolutional Neural Network) 
show strong correlations with restoration 
progress. Notably, both measures also align with 
the composition of non-vocalizing nocturnal 
insects identified through metabarcoding. The 
authors argue that these new technologies, 
including automated monitoring tools, can provide 
reliable and reproducible data to effectively track 
forest recovery success. 

In Ullah, Saqib, & Xiong (2024), the authors 
study the transformative role of AI in enhancing 
traditional biodiversity conservation methods, 
which are often limited by scaling challenges and 
outdated data. The study examines the growing 
use of AI technologies, such as ML and data 
analytics, in improving species identification, 
habitat monitoring, and threat assessment with 
greater precision and efficiency. Through case 
studies, the authors highlight successful 
applications of AI in areas like data management, 
predictive modeling, and resource allocation. The 
findings emphasize the importance of combining 
traditional conservation techniques with modern 
AI approaches to create more resilient and 
effective conservation solutions. The paper also 
discusses the potential implications for future 
research and the practical integration of AI in 
conservation efforts, suggesting that such synergy 
can enhance both scientific outcomes and 
conservation practices. 

Chatbots have been the focus of numerous 
studies, which explore both the potential benefits 
and the challenges, including biases, of LLMs. Here 
are some examples. 

In Haghighi, Saqalaksari, Johnson (2023), the 
authors examine the potential of AI, particularly 
ChatGPT by OpenAI, to transform ecological 
research and education. The paper discusses the 
use of AI-driven chatbot services in ecology 
education, academic writing, and research, 
highlighting both the opportunities and challenges 

associated with these technologies. AI can 
significantly reduce the workload of researchers, 
generate new insights, and assist students in 
learning, but it also presents several limitations. 
These include AI's inability to fully capture the 
complexity of ecological systems, its reliance on 
high-quality data, and the ethical concerns of using 
AI in research. Additionally, the environmental 
impact of AI technologies, including the 
construction and operation of such services, is 
addressed, with both potential negative and 
positive outcomes. The authors emphasize that 
while AI, particularly AI chatbots, can be a valuable 
tool in ecological research by automating tasks and 
analyzing large datasets, it is crucial to adopt a 
responsible, sustainable, and transparent 
approach. Ethical considerations, as well as the 
environmental and societal implications, should 
be carefully evaluated to ensure that AI 
contributes positively to the field of ecology. 

The research by Manik, Rini, Priyanti, et al. 
(2024) examines the factors influencing the 
adoption of Chatsicum, a Knowledge-Based 
Chatbot (KBC) designed to enhance species 
literacy for biodiversity students (Figure 5). The 
study aims to bridge the gap between technology, 
education, and biodiversity conservation by 
providing innovative solutions to empower 
individuals with species knowledge for natural 
world preservation. Using a quantitative approach 
and Partial Least Square Structural Equation 
Modeling (PLS-SEM), the study analyzed 
responses from 145 university students. The 
research model combined the Task-Technology Fit 
(TTF) framework and elements from the Diffusion 
of Innovation (DOI), such as relative advantage, 
compatibility, complexity, and observability, while 
introducing perceived trust as a variable. The 
study found that TTF influenced all DOI factors 
positively, except for complexity, which had a 
negative impact. While TTF significantly affected 
usage intention indirectly, compatibility and trust 
were found to strongly influence the intention to 
use the KBC. The findings provide insights for 
developers, educators, and policymakers in 
enhancing biodiversity education. It is 
recommended that developers prioritize KBCs 
aligned with user needs and build trust through 
accurate information. Educators should design 
interventions that cater to diverse learner 
preferences, and conservation organizations can 
use these findings to improve outreach efforts. 
Future research should delve deeper into the 
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relationships between TTF, DOI, and trust, 
exploring mediating and moderating variables. 
Longitudinal studies could examine the evolving 
user behavior and investigate how species literacy, 
augmented by chatbots, impacts real-world 
conservation actions. 

 

 
Fig. 5: Chatsicum user interface 

 
Urzedo, Sworna, Hoskins, et al. (2024) examine 

the impact of AI-driven language models, such as 
chatbots, on ecological restoration and 
conservation efforts, focusing on the potential 
biases in chatbot-generated content. By analyzing 
30,000 responses from ChatGPT on topics related 
to ecological restoration expertise, stakeholder 
engagement, and techniques, the study reveals a 
heavy reliance on expertise from male academics 
in the United States, while significantly 
underrepresenting knowledge from low- and 
lower-middle-income countries (7%) and 
Indigenous communities (2%). The responses 
predominantly emphasize reforestation 
techniques (69%) and optimistic environmental 
outcomes (60%), while neglecting broader, 
holistic approaches that involve non-forest 
ecosystems (25%) and non-tree species (8%). The 
findings highlight how AI-driven content creation 
can reinforce Western-centric scientific 
perspectives and exclude diverse sources of 
ecological knowledge. The paper calls for the 
integration of more inclusive and just principles in 
the development of generative AI tools to address 
the global environmental crisis more equitably. In 
a recent paper (Sworna, Urzedo, Hoskins et al., 
2024), the same group delves deeper into the 
ethical concerns surrounding the use of AI-driven 
chatbots, such as ChatGPT, in the context of 
conservation research and practices. The study 
examines the sources, biases, and representation 
of conservation evidence generated by two 

versions of ChatGPT, GPT-3.5-turbo and GPT-4, 
analyzing 40,000 responses related to ecological 
restoration. The findings reveal that while these AI 
models are improving the inclusion of diverse data 
sources and enhancing the accuracy of responses, 
they still exhibit significant ethical issues. The 
chatbots predominantly rely on evidence from 
high-income countries (88%), North American 
experts (67%), and male academics (46%), with 
minimal input from minority groups, Indigenous 
organizations (10%), and low-income countries 
(2%) (Figure 6). The paper emphasizes the need 
for human-centered negotiations to ensure fair 
representation and the equitable inclusion of 
diverse expertise and knowledge in the 
development and use of AI tools like chatbots. 

 

 
Fig. 6: Comparison of countries mentioned by GPT-3.5-turbo 

and GPT-4 model. Although the inclusion of more different 
countries is observed in GPT-4 model, both GPT models 

heavily rely on narrow expertise from the global north (from 
Sworda, et al. 2024). License: 

http://creativecommons.org/licenses/by/4.0/. 

 
The literature also includes a few review 

papers.  
The article by Nti, Cobbina, Attafuah, et al. 

(2022) is a systematic review in which the authors 
highlight the growing significance of AI in 
addressing environmental sustainability 
challenges, including biodiversity, energy, 
transportation, and water management. They 
discuss the development of machine learning and 
natural language processing solutions for 
predicting ecosystem services in biodiversity 
research. AI models are also explored for their role 
in predicting and optimizing water resource 
conservation. The review emphasizes key focus 
areas such as neural networks, expert systems, 
pattern recognition, and fuzzy logic in energy, 
while applications of computer vision and decision 
support systems are noted in transportation. The 
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authors underline the importance of timely 
monitoring of interventions to enhance 
environmental sustainability.  

The review by Shivaprakash, Swami, 
Mysorekar, et al. (2022) examines the recent 
advancements in data science and digital 
technology, particularly satellite technology, 
which have enhanced the potential for AI 
applications in the forestry and wildlife sectors. 
They focus on India, which shares 7% of the global 
forest cover and is the eighth most biodiverse 
region in the world. Despite this, the country’s 
biodiversity is threatened by rapid urbanization, 
agricultural expansion, and developmental 
projects. The authors highlight how AI adoption in 
India's forest and biodiversity sectors could 
support effective monitoring, management, and 
conservation. A systematic literature review of AI 
applications in forestry and biodiversity 
conservation globally, including within India, is 
presented. The authors also explore the rise of AI-
based startups and non-profits in these sectors, 
revealing slow adoption in India compared to 
developed and other developing nations. They 
identify challenges to AI adoption in India but 
emphasize that improvements in data access, 
cloud computing, and satellite technology could 
accelerate AI integration for forest management 
and biodiversity conservation. The paper aims to 
encourage Indian officials, scientists, and 
conservationists to adopt AI technologies for 
sustainable resource management. 

 

 
 

Fig. 7: Unauthorized loggers are detected and monitored 
using old mobile devices (Raihan, 2023), license: 

ttp://creativecommons.org/licenses/by/4.0/. 

 
Raihan (2023) explores the recent 

advancements in data science, as well as the 
evolution of digital and satellite technology, which 
have significantly increased the potential for AI 
applications in forestry and wildlife conservation. 
The paper highlights the global threat to 
biodiversity posed by the rapid expansion of 
developmental projects, agriculture, and urban 
areas. The author argues that the integration of 
emerging technologies like AI can help in the 
efficient monitoring, management, and 
preservation of biodiversity and forest resources 
(Figure 7). A comprehensive review is provided on 
the use of AI algorithms in the forestry sector and 
biodiversity conservation worldwide. The 
research also examines the challenges faced when 
implementing AI in these fields. The paper 
suggests that improving access to large-scale data 
on forests and biodiversity, along with the use of 
cloud computing and satellite technology, can 
promote broader AI adoption. The author hopes 
that the findings will inspire forest officials, 
scientists, researchers, and conservationists to 
explore the potential of AI for sustainable forest 
management and biodiversity conservation.  

3.2 AI for biodiversity and sustainability: examples 
of commercial companies and applications 

The integration of AI in biodiversity 
conservation has not only captured the interest of 
researchers but also spurred the development of 
innovative commercial applications. Some of them 
are described in this section, listed in alphabetical 
order. Web sites were accessed in December 2024. 

Aclima (https://www.aclima.io/), based in 
California, employs AI to create highly detailed 
maps of air pollution. Their network of sensor-
equipped vehicles gathers real-time air quality 
data, enabling cities and organizations to make 
informed decisions that improve public health and 
environmental quality. 

Agreena (https://agreena.com) (Denmark) 
supports regenerative farming by enabling 
farmers to sell carbon credits to companies 
seeking to offset emissions. This incentivizes 
sustainable agricultural practices, enhancing soil 
health and contributing to carbon sequestration 
while creating new revenue streams for farmers. 

Agricolus (Italy) provides a comprehensive 
platform to optimize agricultural practices 
through AI-driven insights 
(https://www.agricolus.com). This system assists 
farmers in reducing their use of pesticides and 
fertilizers while maximizing crop yields. Agricolus 
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integrates data from soil sensors, weather 
forecasts, and satellite imagery to offer actionable 
recommendations for resource-efficient farming. 
The platform not only boosts productivity but also 
minimizes environmental harm, contributing to 
sustainable food production. 

Algapelago (https://www.algapelago.com/, 
UK) operates large-scale offshore kelp farms to 
capture CO2, enhance ocean biodiversity, and 
improve soil health. Already the UK's largest kelp 
cultivator, the company plans significant 
expansion to scale its environmental impact. 

Apicoltura Urbana, an Italian company at the 
forefront of biodiversity and environmental 
innovation, exemplifies the practical integration of 
AI into sustainable practices 
(https://www.apicolturaurbana.it/). The 
company's specificities merit a thorough 
examination. By offering a unique service called 
"Bees as a Service" (BaaS), Apicoltura Urbana 
enables businesses and individuals to adopt 
beehives, with a data-driven approach for 
biodiversity monitoring and conservation. This 
innovative model leverages AI to transform 
traditional methods of ecological tracking into a 
system based on real-time data. By analyzing the 
movement of bees, their interactions with the 
environment, and the pollination process, the 
company provides unprecedented insights into 
biodiversity trends, which were previously 
understood only through theoretical models. 
Apicoltura Urbana’s adoption of AI is central to its 
mission of addressing the growing challenges 
faced by pollinators. Advanced ML algorithms are 
used to identify patterns and detect anomalies 
related to environmental stressors such as 
pollution and diseases. This capability empowers 
businesses and environmental managers to make 
data-driven decisions about biodiversity 
conservation and their operational impacts on 
ecosystems. Key features of the AI-powered 
system include bee recognition and movement 
tracking, real-time monitoring and alerts, and 
combating the varroa parasite. ML algorithms can 
identify individual bees, track their movement, 
and analyze the pollen they carry. By categorizing 
the color of pollen and determining its plant origin, 
the system provides valuable information about 
local flora, flowering trends, and overall 
biodiversity health. The technology allows for the 
real-time detection of critical issues, such as bee 
poisoning from agricultural chemicals. By 
identifying such threats promptly, remote 

interventions can be initiated, such as restricting 
access to the hive to protect the colony’s health. 
The Varroa mite, a parasitic threat to bee 
populations globally since the 1980s, can be 
controlled using AI: Apicoltura Urbana’s system 
raises hive temperatures in a controlled manner, 
naturally eliminating the parasite without the 
need for chemical treatments. This method is not 
only effective but also promotes sustainable 
beekeeping practices. The implications of 
Apicoltura Urbana’s approach extend beyond the 
health of individual hives. By providing tangible 
data about pollination patterns, plant biodiversity, 
and ecosystem health, this technology creates 
actionable insights for enhancing agricultural 
practices by understanding pollination dynamics, 
informing policy decisions for biodiversity 
conservation, and reducing reliance on chemical 
treatments, supporting organic farming methods. 
The integration of AI into beekeeping 
demonstrates a practical pathway for addressing 
the challenges of biodiversity loss. It bridges 
cutting-edge technology with age-old natural 
processes, highlighting how innovation can be a 
powerful tool in ensuring environmental 
sustainability. Apicoltura Urbana’s work not only 
protects pollinators but also fosters a broader 
commitment to preserving ecosystems for future 
generations. 

Blue River Technology, a John Deere company, 
is based in California. They integrate AI into 
agriculture to advance sustainable practices 
(https://www.bluerivertechnology.com). Their 
AI-powered machinery reduces dependency on 
pesticides and fertilizers, fostering 
environmentally friendly crop management. 

Boston Consulting Group, based in US and Italy, 
(https://www.bcg.com/) uses AI to deliver deep 
insights into multiple aspects of a company’s 
carbon footprint and quick cost-cutting, offering a 
promising route to accelerating sustainable 
transformation and reducing expenses. 

Carbon Engineering in British Columbia 
(https://carbonengineering.com/) harnesses AI to 
enhance carbon capture and removal 
technologies. Their innovative approach extracts 
carbon dioxide from the atmosphere, a pivotal step 
in fighting climate change, with AI optimizing the 
efficiency of the process. 

Conservation Metrics, based in California 
(https://conservationmetrics.com/), offers 
automated solutions to replace traditional, labor-
intensive wildlife survey methods. By integrating 



(2024), Speial Issue G. De Nunzio, R. Rizzo 

 64  

advanced wildlife monitoring technology, remote 
sensing, robust statistical methods, and scientific 
expertise, it reduces costs while enhancing the 
scope and accuracy of wildlife measurements. For 
example, they apply AI to safeguard marine 
ecosystems. Their software automates the analysis 
of underwater footage, helping organizations such 
as The Nature Conservancy monitor marine life 
and accelerate conservation efforts. 

Descartes Labs (https://descarteslabs.com/), 
Santa Fe (US), applies AI to interpret satellite 
images, delivering valuable information on 
deforestation, land use shifts, and carbon output. 
Their models support policymakers and 
conservationists in monitoring and mitigating 
deforestation, contributing significantly to forest 
preservation efforts. 

Greeniant (https://greeniantold.weebly.com/) 
is based in The Netherlands. This company 
employs AI to identify and monitor human 
activities that negatively impact the environment. 
These activities include overexploitation of land, 
pollution, and other harmful practices. The system 
generates detailed reports and alerts, empowering 
governments, organizations, and 
environmentalists to address these issues 
effectively. By offering precise data, Greeniant 
plays a crucial role in mitigating environmental 
damage and promoting sustainable development. 

GreenVulcano (Italy) leverages AI to monitor 
and reduce greenhouse gas emissions in industrial 
settings (https://www.greenvulcano.com/). By 
analyzing emissions data, their system identifies 
areas where energy efficiency can be improved, 
enabling industries to implement targeted 
interventions. This technology supports 
companies in reducing their carbon footprint 
while adhering to increasingly stringent 
environmental regulations. 

Iceberg Data Lab from France 
(https://www.icebergdatalab.com) provides 
environmental analytics for financial institutions 
to evaluate the biodiversity impact of investments. 
It also determines whether entities align with 
global climate goals, including the Paris 
Agreement, supporting informed decision-making 
in the financial sector. 

Leeana (https://www.leeana.io/) (Germany) 
helps businesses and financial institutions 
understand and address their biodiversity impact. 
The platform offers tools for risk assessment, data 
management, and mitigation planning, aligning 

business activities with conservation regulations 
to foster positive environmental outcomes. 

Microsoft leverages artificial intelligence 
through its AI for Earth program to aid global 
biodiversity conservation. The initiative offers AI 
tools for ecosystem monitoring and management, 
empowering data-driven strategies to safeguard 
the planet's diverse biological heritage. 

Nala Earth (https://www.nala.earth/) from 
Germany provides a platform for businesses to 
measure, report, and mitigate their biodiversity 
impact and risks. By analyzing data such as water 
stress and deforestation, the platform equips 
companies with tools to comply with biodiversity-
related regulations and set impact reduction 
targets. 

Spun out of Oxford University, Natcap (UK) 
(https://www.natcapresearch.com/) offers a 
platform to assist corporations in meeting nature-
related reporting standards. It helps organizations 
assess and manage dependencies, risks, and 
impacts on nature, while setting actionable 
environmental targets. 

Pivotal Earth (https://pivotal.earth/, UK) 
focuses on large-scale biodiversity regeneration 
by linking commitments to tangible outcomes. 
Using a detailed species-level biodiversity dataset, 
it connects gains in biodiversity to financial tools 
like biodiversity credits and sustainability-linked 
bonds, encouraging investments in restoration 
projects. 

Focusing on soil biodiversity, Soilytix  
(Germany) monitors bacteria, fungi, and 
microfauna to help organizations optimize crop 
yields and measure soil’s carbon removal potential 
(https://soilytix.com/). Currently, it collaborates 
with supermarkets to assess the regenerative 
practices of farms in their supply chains. 

Single Earth (https://www.single.earth/, 
Estonia) bridges conservation efforts with 
financial backing by connecting landowners with 
investors. The platform allows enterprises to 
purchase tokens to balance their environmental 
impact while monitoring projects through digital 
twins that track carbon sequestration and 
biodiversity progress. 

Stream Ocean (https://www.streamocean.io/) 
is based in Switzerland. They combine underwater 
cameras and real-time analytics to monitor the 
impact of offshore wind farms on marine 
biodiversity. This technology provides essential 
data for ensuring the growth of renewable energy 
projects without harming marine ecosystems. 
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V7 (https://www.v7labs.com/) is a UK-based 
startup co-founded by an Italian entrepreneur, 
which specializes in using AI-driven computer 
vision to address critical environmental and 
biodiversity challenges. V7’s technology has been 
successfully applied across diverse scenarios, 
leveraging advanced AI algorithms to process data 
from cameras, drones, and satellites. By deploying 
cameras strategically placed on trees within the 
Chinko Nature Reserve in Africa, V7’s AI system 
identifies endangered animals. The system 
processes vast amounts of footage to detect the 
presence of at-risk species, enabling 
conservationists to monitor their movements and 
implement timely protective measures. V7 
employs drones equipped with cameras to identify 
smoke sources in forests. This capability facilitates 
early detection of potential wildfires, allowing 
authorities to respond quickly and mitigate 
damage to ecosystems. Through the analysis of 
satellite imagery, V7’s AI can pinpoint areas 
affected by flooding or coastal erosion. These 
insights help environmental organizations and 
local governments take preventive actions to 
protect vulnerable ecosystems and nearby 
communities. In aquaculture settings, V7’s 
underwater cameras and ultrasound imaging 
systems assess the health of farmed fish 
populations. The devices detect signs of disease or 
stress, enabling fish farmers to optimize care and 
reduce losses while promoting sustainable 
farming practices. In protected marine areas, V7’s 
AI identifies the presence of plastic and other non-
biodegradable waste. By analyzing images from 
drones and underwater cameras, the system 
supports clean-up efforts and enhances strategies 
to combat marine pollution. 

Xylem (https://www.xylem.com/) head office 
is in Washington DC. They use AI to transform 
water resource management. By monitoring and 
optimizing water infrastructure, their systems 
reduce water waste and promote a more 
sustainable and reliable water supply. 

Zulu Ecosystems is based in UK. 
(https://www.zuluecosystems.com/). This 
company connects landowners with corporations 
to implement nature regeneration projects, such 
as woodland and peatland restoration. The 
platform facilitates planning and execution to help 
businesses fulfill ecological commitments 
effectively. 

Several other companies and commercial AI 
applications exist: the given list of examples is only 

a glimpse into the world of innovative companies 
and startups and exemplifies how AI can serve as 
a powerful ally in the fight for environmental 
sustainability. The commercial applications of AI 
systems demonstrate the potential of combining 
technological innovation with environmental 
stewardship. These solutions not only address 
specific conservation challenges but also pave the 
way for scalable and replicable approaches across 
different ecosystems. By harnessing the 
capabilities of AI, companies are contributing to a 
more sustainable future, where cutting-edge 
technology supports biodiversity protection on a 
global scale. 

4. Sustainable agriculture: from Agriculture 4.0 to 
Agriculture 5.0 

Since biodiversity and sustainability are 
closely interconnected, it is important in this 
context to explore how policy initiatives are 
promoting sustainability in agriculture. 

The evolution of agriculture toward 
sustainability has led to the development of 
Agriculture 4.0 and Agriculture 5.0 (Fountas, 
Espejo-García, Kasimati, et al., 2024), marking 
significant milestones in the transformation of 
food production (Figure 8). These advancements 
integrate cutting-edge technologies and practices 
to enhance efficiency, sustainability, and 
consumer-centricity in the agricultural sector. 

Agriculture 4.0 builds upon the principles of 
precision agriculture (Agriculture 3.0), which 
employed digital and information technologies for 
targeted agronomic interventions. It incorporates 
IoT, cloud computing, and data connectivity to 
create a networked, intelligent farming ecosystem. 
Key enabling technologies include: 

• Sensors for real-time data collection on 
soil, weather, and crop health. 

• Drones for monitoring and mapping 
agricultural land. 

• Automation and robotics for planting, 
harvesting, and maintaining crops. 

• AI and data analytics for optimizing 
production and resource management. 

The benefits of Agriculture 4.0 are substantial: 
• Increased efficiency in resource utilization. 
• Reduced operational costs. 
• Improved traceability throughout the agri-

food supply chain. 
• Enhanced collaboration among 

stakeholders, from farmers to distributors. 
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Moving beyond the automation and 
digitalization of Agriculture 4.0, Agriculture 5.0 
introduces a paradigm where human ingenuity is 
synergized with machine capabilities. This 
approach emphasizes flexible, personalized, and 
sustainable agricultural practices. 

Core aspects of Agriculture 5.0 include: 
• Personalization: Tailoring agricultural 

products to meet specific consumer needs, 
focusing on quality and individual 
preferences. 

• Sustainability: Utilizing advanced 
technologies to minimize environmental 
impacts by reducing energy consumption, 
waste, and the use of pesticides and 
fertilizers. Initiatives include carbon 
reduction, reforestation, and wastewater 
reuse, aligning with green and digital 
transitions. 

• Regeneration: Agriculture 5.0 aims not 
only to protect the environment but also to 
regenerate ecosystems, restoring 
degraded land and biodiversity. 

In summary, while Agriculture 4.0 emphasizes 
digital transformation and resource optimization, 

Agriculture 5.0 goes further by integrating human 
creativity, AI, and robotics into the agricultural 
process. This collaboration facilitates sustainable 
and personalized farming practices, addressing 
both the demands of modern consumers and the 
urgent need for environmental stewardship. 
Together, these innovations represent a critical 
step toward a more sustainable and regenerative 
future for global agriculture. 

4.1 European and Italian initiatives supporting 
Agriculture 4.0 and 5.0 

The advancement of Agriculture 4.0 and 5.0 is 
underpinned by significant policy interventions 
and financial support aimed at driving the green 
and digital transformation of the agricultural 
sector. These initiatives not only promote 
sustainable farming practices but also provide 
businesses with the tools to achieve 
environmental and technological goals.  Some of 
the key European policies and strategies are:   

• Industry 5.0 Report by the European 
Union:    The “Towards a Sustainable, 
Human-Centric, and Resilient European 

 

Fig. 8: The trend of agricultural development (AM: Agricultural Mechanization; AG: Agriculture). From Huang et al. (2020), 
license: http://creativecommons.org/licenses/by/4.0/). 
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Industry” report (European Commission, 
2021) emphasizes the role of industry, 
including agriculture, in advancing 
sustainability and human-centered 
approaches. It highlights the importance of 
integrating resilience into industrial 
practices to address environmental and 
societal challenges.   

• The Green Deal: The European Green Deal 
is a landmark initiative aiming to make the 
European Union carbon-neutral by 2050. 
With a budget of €1 trillion over ten years, 
this plan supports both the green 
transition and the digital transition, 
providing a robust framework for 
innovation and sustainable development 
across all sectors, including agriculture.   

The initiative by the Italian government 
aligned with the directives issued by the European 
Union is the “Transizione 5.0” tax credit.  
Introduced under the National Recovery and 
Resilience Plan (PNRR), it supports businesses in 
their digital and green transformation efforts. This 
measure, enacted through Decree-Law No. 
19/2024 and its subsequent conversion under 
Law No. 56/2024, is particularly relevant for the 
agricultural and agromechanical sectors. Funding 
allocation was a total of €6.3 billion for 2024-
2025, with an additional €6.4 billion from the 
national budget, to support digital and green 
transitions across industries. Investments 
qualifying for the tax credit include interconnected 
machinery, equipment, and software, as well as 
robotics systems controlled by computerized 
mechanisms and equipped with sensors and 
actuators.  

These technologies must also demonstrate a 
measurable reduction in energy consumption, 
aligning with the sustainability objectives of 
Agriculture 5.0.   

These interventions provide agricultural 
businesses with significant opportunities to 
modernize operations and adopt sustainable 
practices. By leveraging financial support for 
advanced technologies, farms can enhance 
productivity while reducing their environmental 
footprint. Initiatives such as these also align with 
the broader goals of reducing greenhouse gas 
emissions and fostering a greener, more efficient 
agricultural landscape.   

The synergy between fiscal policies, 
technological innovation, and environmental 
priorities paves the way for a resilient agricultural 

sector that embraces the principles of Agriculture 
4.0 and 5.0, ensuring long-term sustainability and 
growth. 

4.2 Challenges of innovation in the transition to 
Agriculture 5.0 

The shift to Agriculture 5.0 represents a 
paradigm shift in the agrifood system, offering 
tremendous potential to revolutionize traditional 
practices. However, the transition also faces 
critical challenges rooted in the socio-economic 
and cultural framework of conventional 
agriculture.   

The main challenge is that the agrifood sector 
operates within a system heavily influenced by the 
principles of conventional agriculture, which is 
characterized by:   

• Dominance of large-scale retail chains: The 
preponderance of Organized Large 
Distribution (GDO) exerts significant 
influence on agricultural production and 
distribution practices.   

• Market for proprietary technologies: 
Innovation is often driven by proprietary 
systems, which may limit accessibility and 
customization for smaller stakeholders.   

• Reinforcement of long food supply chains: 
Conventional agriculture tends to 
prioritize extended supply chains, which 
can increase inefficiency and 
environmental impact.   

While powerful technologies associated with 
Agriculture 4.0—such as predictive analytics, real-
time operational insights, and business process 
redesign—hold significant potential to transform 
farming, their current implementation largely 
perpetuates the established practices and logic of 
conventional agriculture.   

Other important questions are accessibility 
issues and scale bias. Many of the measures and 
innovations associated with Agriculture 4.0 and 
5.0 are most readily applicable to medium-to-large 
enterprises. This creates a disparity where smaller 
farms, which often lack the financial resources and 
infrastructure to adopt these innovations, risk 
being left behind in the transition.   

If these challenges are not addressed, the 
transition to Agriculture 5.0 may inadvertently 
exacerbate inequalities within the agrifood sector. 
Ensuring that technological advancements are 
inclusive and accessible to farms of all sizes is 
critical for achieving the broader goals of 
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sustainability, equity, and resilience in agriculture. 
Solutions such as cooperative ownership of 
technologies, open-source innovation, and 
targeted support for smaller operations could help 
bridge this gap and foster a more equitable 
transition.   

Addressing these systemic issues will be 
essential to unlocking the full potential of 
Agriculture 5.0, allowing it to move beyond the 
constraints of conventional agriculture and 
contribute meaningfully to a sustainable and 
inclusive future for the agrifood system. 

5. Conclusions 

The integration of AI in biodiversity 
conservation and sustainable agriculture marks a 
transformative step toward addressing critical 

environmental challenges. From monitoring 
endangered species and detecting environmental 
threats to optimizing agricultural processes and 
supporting regenerative practices, AI-driven 
technologies demonstrate immense potential for 
fostering sustainability. However, as highlighted, 
the transition to Agriculture 5.0 and similar 
innovations must ensure inclusivity, avoiding 
disproportionate benefits to larger enterprises 
while marginalizing smaller stakeholders. By 
combining technological advancements with 
supportive policies like those from the European 
Union and fostering equitable access, we can 
create a future where economic growth 
harmonizes with environmental preservation and 
social equity. 

 



(2024), Special Issue Artificial Intelligence and Biodiversity 

69 

REFERENCES 

August, T. A., Pescott, O. L., Joly, A., & Bonnet, P. (2020). AI Naturalists Might Hold the Key to Unlocking 
Biodiversity Data in Social Media Imagery. Patterns, 1 (7), 100116. 
https://doi.org/10.1016/j.patter.2020.100116 

Delavaux, C.S., Crowther, T.W., Zohner, C.M., Robmann, N. M., Lauber, T., van den Hoogen, J., Kuebbing, S., 
Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P. B., Abegg, M., Adou Yao, Y., C., Alberti, G., Almeyda Zambrano. 
A. M., Alvarado, B. V., Alvarez-Dávila, E., varez-Loayza, P., Alves, L. F.,... , & Maynard, D. S. (2023). Native 
diversity buffers against severity of non-native tree invasions. Nature, 621, 773-781. 
https://doi.org/10.1038/s41586-023-06440-7

European Commission, Directorate-General for Research and Innovation (2021). Industry 5.0 - Towards a 
sustainable, human-centric and resilient European industry. Retrieved from https://research-and-
innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-
publications/industry-50-towards-sustainable-human-centric-and-resilient-european-industry_en on 
December 1st, 2024 

Fountas, S., Espejo-García, B., Kasimati, A., Gemtou, M., Panoutsopoulos, H., & Anastasiou, E. (2024). 
Agriculture 5.0: Cutting-Edge Technologies, Trends, and Challenges. IT Professional, 26 (1), 40-47. 
https://doi.org/10.1109/MITP.2024.3358972 

Haghighi, S. R., Saqalaksari, M. P., & Johnson, S. N. (2023). Artificial Intelligence in Ecology: A Commentary 
on a Chatbot’s Perspective. The Bulletin of the Ecological Society of America, 104(4): e02097. 
https://doi.org/10.1002/bes2.2097 

Huang, K., Shu, L., Li, K., Yang, F., Han, G., Wang, X., & Pearson, S. (2020). Photovoltaic Agricultural Internet 
of Things towards Realizing the Next Generation of Smart Farming. IEEE Access, 8, 76300-76312. 
https://doi.org/10.1109/ACCESS.2020.2988663 

Ma, H., Crowther, T. W., Mo, L., Maynard, D. S., Renner, S. S., van den Hoogen, J., Zou, Y., Liang, J., de-Miguel, 
S., Nabuurs, G.-J., Reich, P. B., Niinemets, Ü., Abegg, M., Adou Yao, Y. C., Alberti, G., Almeyda Zambrano, A. M., 
Alvarado, B. V. Alvarez-Dávila, E., Alvarez-Loayza, P., ... , & Zohner, C. M. (2023). The global biogeography 
of tree leaf form and habit. Nature Plants 9, 1795–1809. https://doi.org/10.1038/s41477-023-01543-5 

Manik, L. P., Rini, D., S., Priyanti, P., Indrawati, A., Fefirenta, A. D., Akbar, A., Sumowardoyo, T., D., Apriani, 
N. F., Kartika, Y. A. (2024). Unraveling knowledge-based chatbot adoption intention in enhancing species 
literacy. Interdisciplinary Journal of Information, Knowledge, and Management, 19, 11. 
https://doi.org/10.28945/5280

Mo, L., Zohner, C.M., Reich, P.B., Liang, J., de Miguel, S., Nabuurs, G.-J., Renner, S. S., van den Hoogen, J., Araza, 
A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O. L., Gamarra, J. G. P., Hordijk, I., Routh, D., Abegg, 
M., Adou Yao, Y. C., ... Crowther,T. W. (2023). Integrated global assessment of the natural forest carbon 
potential. Nature, 624, 92-101. https://doi.org/10.1038/s41586-023-06723-z 

Müller, J., Mitesser, O., Schaefer, H.M., Seibold, S., Busse, A., Kriegel, P., Rabl, D., Gelis, R., Arteaga, A., Freile, 
J., Leite, G. A., de Melo, T. N., LeBien, J., Campos-Cerqueira, M., Blüthgen, N., Tremlett, C. J., Bottger, D., 
Feldhaar, H., Grella, N., Falconí-López, A., Donoso, D. A., Moriniere, J., & Buřivalová, Z. (2023). Soundscapes 
and deep learning enable tracking biodiversity recovery in tropical forests. Nature Communications, 14, 
6191, https://doi.org/10.1038/s41467-023-41693-w 

Nti, E. K., Cobbina, S. J., Attafuah, E. E., Opoku, E., & Gyan, M. A. (2022). Environmental sustainability 
technologies in biodiversity, energy, transportation and water management using artificial intelligence: A 
systematic review, Sustainable Futures 4, 100068, https://doi.org/10.1016/j.sftr.2022.100068 



(2024), Speial Issue G. De Nunzio, R. Rizzo 

 70  

Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and 
biodiversity conservation. Natural Resources Conservation and Research, 6(2). doi: 
10.24294/nrcr.v6i2.3825 

Roy, D. B., Alison, J., August, T. A., Bélisle, M., Bjerge, K., Bowden, J. J., Bunsen, M. J., Cunha, F., Geissmann, Q., 
Goldmann, K., Gomez-Segura, A., Jain, A., Huijbers, C., Larrivée, M., Lawson, J. L., Mann, H. M., Mazerolle, M. 
J., McFarland, K. P., Pasi, ... Høye, T. T. (2024). Towards a standardized framework for AI-assisted, image-
based monitoring of nocturnal insects. Philosophical Transactions of the Royal Society B, 379:20230108. 
http://doi.org/10.1098/rstb.2023.0108 

Shivaprakash K. N., Swami N., Mysorekar S., Arora R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & 
Kiesecker J. M. (2022). Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in 
Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 14(12):7154. 
https://doi.org/10.3390/su14127154 

Silvestro, D., Goria, S., Sterner, T., & Antonelli, A. (2022). Improving biodiversity protection through 
artificial intelligence. Nature Sustainability, 5, 415-424, https://doi.org/10.1038/s41893-022-00851-6 

Sworna, Z.T., Urzedo, D., Hoskins, A.J., & Robinson, C. J. (2024) The ethical implications of Chatbot 
developments for conservation expertise.  AI and Ethics, 4, 917–926. https://doi.org/10.1007/s43681-
024-00460-3 

Tuia, D., Kellenberger, B., Beery, S., Blair R., Costelloe, B. R., Zuffi, S., Risse, B., Mathis, A., Mathis, M. W., van 
Langevelde, F., Burghardt, T., Kays, R., Klinck, H., Wikelski, M., Couzin, I. D., van Horn, G., Crofoot, M. C., 
Stewart, C. V., & Berger-Wolf, T. (2022). Perspectives in machine learning for wildlife conservation. Nature 
Communications, 13, 792. https://doi.org/10.1038/s41467-022-27980-y 

Ullah, F., Saqib, S., & Xiong, YC. (2024). Integrating artificial intelligence in biodiversity conservation: 
bridging classical and modern approaches. Biodiversity and Conservation. 
https://doi.org/10.1007/s10531-024-02977-9 

Urzedo, D., Sworna, Z.T., Hoskins, A.J., & Robinson, C. J. (2024). AI chatbots contribute to global 
conservation injustices. Humanities and Social Sciences Communications 11(204). 
https://doi.org/10.1057/s41599-024-02720-3 

 

 

 


