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Abstract

Climate change and biodiversity loss are two of the most pressing challenges of recent decades. While the former has received
significant attention from both the scientific community and the public, the latter often remains in the background.
Nevertheless, the two phenomena are deeply interconnected, and Artificial Intelligence (AlI), through machine learning and
predictive modeling, provides valuable means to help address some of the global challenges they present. In particular, Al
can be employed to predict the risks and impacts associated with climate change, providing information that directly
contributes to a better understanding of biodiversity dynamics and vulnerabilities. In this work, we present an application of
a machine learning method, namely the clustering of compound events, to demonstrate how the joint analysis of two or more
interacting factors can provide a more comprehensive understanding of socio-environmental phenomena.
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1. Introduction

In October 2024, a devastating flood resulted
in the death of 228 individuals in Valencia.
Approximately 360000 people were left without
access to potable water for many days, while
50000 experienced a prolonged lack of electricity.
The estimated economic damage amounted to 16.5
billion euros (Calvo-Sancho et al., 2025). The flood
also severely impacted biodiversity, particularly at
the Albufera Natural Park, by inundating the area
with plastic waste, sewage, and other debris,
contaminating the habitat and threatening species
like the endangered Valencia toothcarp (see, for
instance, Chauvet, 2024).

In Los Angeles, on January 7t, 2025, severe
wildfires led to the death of 29 people. Around
150000 individuals were displaced, 10000 houses
were destroyed, and the full extent of the damages
is still under assessment (Clemens, 2025). Also in
this case, the event negatively impacted
biodiversity = through habitat destruction,
displacement of wildlife, and soil erosion that
harms aquatic ecosystems (see, for instance,
Senzaki and Deehan, 2025).

These events can be interpreted as examples of
the direct consequences of ongoing climate
change. In fact, recent analyses (Calvo-Sancho et
al, 2025) indicate that human-induced global

warming significantly increased both the intensity
and likelihood of the Valencia flood. These findings
are consistent with broader assessments from the
IPCC Sixth Assessment Report (2023), which
emphasize the growing attributional link between
anthropogenic  climate change and the
intensification of extreme weather events
worldwide. The climate emergency is now both
present and pressing.

At the same time, it has been recognized that
climate change is also contributing to biodiversity
loss and change (Urban, 2015). Extreme climatic
events such as cyclones, droughts, floods or
heatwaves can generate severe consequences on
biodiversity.

What remains less widely acknowledged is
that biodiversity is also a powerful ally in
confronting climate change and increasing societal
resilience. However, this resource is insufficiently
valued and utilized.

In 2018, the storm known as Vaia struck Italy,
particularly the Triveneto area. The event caused
the death of 37 people and inflicted damages
amounting to 5 billion euros. Within three days,
precipitation reached 715 millimeters, an amount
that, under normal conditions, would fall over the
course of an entire year. Vast areas of fallen trees
in locations such as the Pine plateau in the Gorai
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mountain chain became emblematic of the
meteorological disaster (Chirici et al., 2019).

Notably, the storm disproportionately affected
monocultures of Norway spruce. This species,
highly valued for its rapid growth and timber yield,
requires only eighty years before harvesting,
compared to approximately twice as many years
for oak. For this reason, since the late 1800s,
Norway spruce plantations were established
widely across the Alpine arc, replacing native
broadleaf forests (Candotti et al., 2025).

The reforestation of areas affected by Vaia
represents a relevant case study for analyzing
adaptive management strategies in forest
ecosystems under increasing climatic variability.
The extensive damage to monocultural stands of
Norway spruces revealed the structural fragility of
homogeneous systems when exposed to extreme
meteorological stress. This observation aligns with
existing evidence that biodiversity enhances the
capacity of ecosystems to recover from disasters
(e.g., Holling, 1973; Folke et al., 2004).

Post-disturbance management should
therefore aim to promote mixed forest structures,
rather than replicating pre-existing monocultures.
Diversified systems have been shown to reduce
the propagation of damage and the economic
losses, and stabilize ecological processes over time
(Thompson et al., 2009). While such approaches
may entail higher management complexity, they
contribute to lowering systemic risk across
temporal and spatial scales.

The Vaia event hence underscores the need to
reinterpret the environmental (extreme) events as
a complex socio-ecological system whose
quantification and (spatio-temporal) modeling
remain essential for informed decision-making.
Biodiversity, in this framework, constitutes a
functional component of resilience rather than a
purely ecological variable.

In fact, biodiversity encompasses the full range
of plants, animals, and microorganisms present on
Earth, constituting the biological wealth of the
planet. All organisms have co-evolved, forming
complex interconnections and interdependencies
akin to a web. While the rupture of a few
connections may not compromise the system
entirely, the loss of many would result in collapse.

The mathematical theory of complex systems
provides a comprehensive framework for the
analysis of systems composed of multiple
interacting components whose collective behavior
cannot be fully understood by examining
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individual elements in isolation. Such systems can
be conveniently represented by random variables
that, although seemingly governed by underlying
rules, may reveal hidden patterns upon closer
examination.

Specifically, here we illustrate compound
(weather and climate) events (Leonard et al,
2014) that arise from the combination of multiple
drivers that together may generate societal or
environmental risks. Many major climate-related
disasters, such as droughts and storms, result from
such compound events, during which interacting
drivers exceed the coping capacity of affected
systems.

Even though our understanding of climate
extremes and associated impacts is continuously
improving, events that break the coping capacity
of social and environmental systems often
surprise us. This is because most current risk
estimates tend to overlook the risks associated
with correlated compound drivers.

Studying compound events often requires a
multidisciplinary approach combining domain
knowledge of the underlying processes with, for
example, statistical methods, climate model
outputs and, more recently, Al (Artificial
Intelligence) algorithms. In this work, after
examining the link between climate change and
biodiversity, we illustrate the application of
compound events in this context and highlight
some of their potential uses.

2. Climate changes and biodiversity: two
dimensions and a common challenge

As noted above, climate change and
biodiversity = are  closely  interconnected.
Nevertheless, a comparison between the two
reveals three fundamental differences: awareness,
impact, and measurement (as underlined in the
TEDx talk of Castellucci, 2025).

In terms of awareness, climate change has
become central to public debate and widely
recognized as the most urgent environmental
crisis. Biodiversity loss, despite being one of the
first crises acknowledged by the scientific
community, has not received equivalent visibility.
For instance, search data indicate that “climate
change” is searched globally up to three times
more often than “biodiversity”. This imbalance is
reflected in media coverage and institutional
attention.

The institutional response highlights further
disparities. The Conference of the Parties (COP) on
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climate was established in 1992 during the Rio
Earth Summit, and by 2025 will have convened 30
sessions since its inaugural meeting in Berlin in
1995. In contrast, the COP on biodiversity,
initiated in Nassau in 1994, has convened only 16
times. This discrepancy underscores how global
governance prioritizes climate over biodiversity.

The second difference lies in impact.
Greenhouse gases disperse uniformly across the
atmosphere, producing global consequences
irrespective of the continent of origin. In contrast,
biodiversity loss manifests primarily at the local
scale, such as the disappearance of forests in the
Amazon or grasslands in Europe. Although the
impacts are initially local, their cumulative effects
amount to a global crisis.

The third distinction concerns measurement.
Climate change can be quantified using carbon
dioxide equivalent (CO.e), a metric that
consolidates emissions into a single comparable
value. Biodiversity, however, involves multiple
interacting dimensions, making the establishment
of a synthetic metric challenging (Colwell, 2009;
Daly etal., 2018; Pallara, 2024). A possible solution
is the Mean Species Abundance (MSA) index,
which evaluates how close an ecosystem is to its
natural state on a scale from zero (completely
degraded) to one hundred (undisturbed).

Technological tools aid in assessing
biodiversity through a combination of satellite
imagery, in-field sensors, and DNA analysis. For
instance, acoustic sensors can monitor pollinators,
particularly wild bees (Barlow & O’Neill, 2020), by
capturing sound frequencies and species presence.
Satellite imagery, processed through Artificial
Intelligence, segments the Earth’s surface into
classified land-use categories, enabling a detailed
mapping of natural and anthropogenic areas. By
comparing these classifications to reference
baselines, the MSA can be estimated and applied
across diverse ecosystems, from deserts to
rainforests. Crucially, MSA reflects not the quantity
but the quality of biodiversity relative to natural
conditions, allowing equitable comparisons across
ecosystems of varying richness.

Despite this difference in approach, climate
change and biodiversity are strongly correlated.
According to the Global assessment report of the
Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES,
2019), climate change is one of the five drivers that
have affected biodiversity in the past 50 years.
Observational evidence indicates an accelerating
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rate of environmental change across marine,
terrestrial, and freshwater ecosystems, with direct
repercussions on agriculture, aquaculture,
fisheries, and ecosystem services. The combined
action of multiple anthropogenic drivers produces
compound effects that amplify impacts beyond the
contribution of individual factors. Such dynamics
are increasingly documented in diverse
ecosystems, from coral reefs and Arctic
environments to savannas, where interacting

stressors lead to nonlinear responses and
potential regime shifts.
Various forms of pollution and the

proliferation of invasive alien species further
intensify these pressures. Despite regional
variability, atmospheric, terrestrial, and aquatic
pollution levels have continued to rise in several
areas. Marine plastic contamination, for instance,
has increased more than tenfold since 1980,
affecting hundreds of species and propagating
through trophic networks with potential
implications for human health. Concurrently, the
number of recorded alien species has grown by
approximately 40% since 1980, largely driven by
global trade and human mobility (IPBES, 2019).
Nearly one fifth of the planet’s land surface is now
considered vulnerable to biological invasions, with
cascading effects on biodiversity, ecosystem
functions, and socio-economic stability.

Given the accelerating pace and
interconnected nature of these processes,
investigating compound effects, that is, the
interactions among  multiple  concurrent
environmental drivers, has become a scientific and
societal urgency. Traditional single-factor
analyses are no longer sufficient to capture the
emergent behavior of coupled human-natural
systems. As highlighted in Boero (2024), the
coupling of atmospheric and oceanographic
processes, together with coastal and seabed
geomorphology, plays a crucial role in determining
physical dynamics, while human activities
increasingly modify atmospheric, terrestrial, and
aquatic features. Moreover, biotic interactions, in
concert with physical drivers, are fundamental in
shaping biodiversity composition and ecosystem
functioning.

Thus, developing integrative frameworks
capable of quantifying, modeling, and predicting
such interactions is essential for anticipating
critical thresholds, guiding adaptive management,
and informing policy responses under increasing
climatic and ecological uncertainty.
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In the following sections, we present a recent
methodology (compound events) that serves to
describe those phenomena that are caused by
several factors or have multiple effects (e.g.,
droughts, heat waves, wildfires, and air pollution).
In fact, although its use has so far been mainly
focused on climate-related events, it can also be
valuable for biodiversity studies, as these are
likewise characterized by a multitude of drivers
and factors.

3. Climate changes and biodiversity: a statistical
tale

The study of climate changes and biodiversity
requires a rigorous statistical analysis of long-
term environmental data. Over the past century,
global average surface temperatures have
increased by approximately 1.1°C compared to
pre-industrial levels, with a marked acceleration
observed since the 1970s (IPCC, 2023). This trend
is strongly correlated with the rise in atmospheric
concentrations of greenhouse gases, particularly
carbon dioxide (CO;), methane (CH,4), and nitrous
oxide (N,0), which have reached levels
unprecedented in at least the last 800000 years.

Time-series analyses of meteorological and
satellite datasets confirm both the upward
trajectory of mean global temperatures and the
increased variability of climatic patterns. For
example, in Figure 1 we show the data of the
monthly maximum temperatures in summer
(June-July-August) from 1960 to 2024 in a station
located in Southern Germany. The blue line
interpoles the actual data, while the red line shows
the linear trend of the data. It shows an increasing
trend that can be observed in most parts of the
world. To build Fig. 1 we have used the data
extracted from the ERAS5 dataset (Copernicus
Climate Change Service, 2025), which collects
global climate and weather data of the past 8
decades.

Extreme events, including floods, wildfires,
heatwaves, and droughts, exhibit a statistically
significant increase in frequency and intensity. For
instance, precipitation anomalies demonstrate not
only greater deviation from historical averages but
also an altered distribution, with episodes of
extreme rainfall concentrated in shorter periods.
Similarly, the incidence of large-scale wildfires has
risen in correlation with prolonged droughts and
elevated mean seasonal temperatures.
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Fig. 1: Temperature time series trend from1960 to 2024
in a station located in Southern Germany

Statistical modeling, employing regression
analyses and probabilistic forecasting, indicates
that these observed phenomena cannot be
attributed solely to natural variability. Instead,
anthropogenic factors are the dominant drivers, as
confirmed by the Intergovernmental Panel on
Climate Change (IPCC, 2023). The use of
representative concentration pathways (RCPs)
and shared socioeconomic pathways (SSPs)
further enables projections of future climatic
conditions under different emissions scenarios.

From a biodiversity perspective, these
statistical trends underscore the urgency of
integrating climate metrics with ecological
indicators. While CO, equivalent serves as a
synthetic and widely adopted measure of
anthropogenic impact, its intersection with
biodiversity indices such as Mean Species
Abundance (MSA) may provide a more integrated
understanding of the cascading consequences of
climate change on ecosystems.

Another indicator used to quantify biodiversity
is the Living Planet Index (LPI), which provides a
complementary perspective on global ecological
change. The LPI is a composite indicator that
tracks the state of global biodiversity by
measuring the average change in abundance of
vertebrate species populations over time.
Developed by the Zoological Society of London and
WWF (Zoological Society of London & WWEF,
2025), the index aggregates thousands of
population time series for mammals, birds,
amphibians, reptiles, and fish across all major
biogeographical regions. Values are normalized to
100 in 1970, meaning that any subsequent
decrease reflects an overall decline in population
abundance relative to that baseline.
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Figure 2 shows the temporal evolution of the
LPI across different world regions from 1970 to
2020. The data have been downloaded from the
World Wildlife Fund and Zoological Society of
London (2025), processed by Our World in Data.
The index value considers the change in
abundance in 34836 populations across 5495
native species both terrestrial and marine.

100

Index

1970 1980 1990 2000 2010 2020

Year

Africa Europe and Central Asia ~ Latin America and the Caribbean ~ World
Asia and Pacific ~ Freshwater North America

Fig. 2: Living Planet Index by region (1970-2020)

The general trend reveals a substantial decline
in biodiversity, particularly pronounced in tropical
and developing regions such as Latin America and
Africa, whereas some temperate regions (e.g.,
Europe and North America) show relatively
smaller decreases or partial stabilization. The
global curve (in pink) indicates an overall
reduction of around 60% in average population
sizes since 1970.

When considered together with the increasing
trends in maximum temperature illustrated above,
these results highlight the urgent need to better
understand the complex interconnections
between climate change and biodiversity loss.
Rising temperatures, habitat degradation, and
other anthropogenic pressures jointly may have
contributed to the observed declines in wildlife
populations, underlining the importance of
integrating climate-biodiversity conservation
strategies.

4. Climate changes and biodiversity: the role of Al

Artificial intelligence (Al) is emerging as a
transformative tool in addressing the multifaceted
challenges of climate change, offering new
pathways for both mitigation and adaptation.
Through advanced data analytics, machine
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learning, and predictive modeling, Al can enhance
the precision of climate forecasting, optimize
energy systems, and support the transition toward
low-emission technologies (see, e.g., De Padova et
al, 2024). In the environmental domain, Al can
facilitate the monitoring of land use, water
resources, and biodiversity. These applications
can help identify habitat changes and contribute to
efforts aimed at protecting ecosystems. Beyond
technical innovation, Al also plays a crucial role in
integrating diverse climate data sources thereby
strengthening decision-making frameworks in
agriculture, disaster management, and urban
planning. However, the deployment of Al in
climate research is not without risks. High
computational energy consumption, biases in
environmental datasets, and unequal access to
digital infrastructure may inadvertently reinforce

existing vulnerabilities. Ensuring that Al
development aligns with  principles of
transparency, equity, and sustainability is

therefore essential to realizing its potential as an
ally in climate action.

Recentresearch initiatives (e.g., Naughtin et al.,
2025) emphasize the need for interdisciplinary
collaboration to ensure that Al systems contribute
not only to emissions reduction and resource
optimization but also to the protection of
biodiversity and ecosystem services, which remain
foundational to global climate resilience.

Another aspect that has been revolutionized in
recent years thanks to advances in digital
technologies and Al is the approach to biodiversity
protection (see, e.g., De Nunzio & Rizzo, 2024;
Ullah et al, 2025). Traditionally, monitoring
ecosystems and species required significant
resources, lengthy timeframes, and manual
interventions, often limited by logistical
challenges. Today, thanks to machine learning
algorithms and advanced data analysis systems, it
is possible to process enormous amounts of
information from diverse sources quickly,
enabling real-time and highly detailed insights.

Al, for example, allows us to monitor animal
and plant species through images, sounds, or
environmental data collected in the field,
identifying their presence, movements, and
behaviors without directly interfering with their
natural habitat. This data can be cross-referenced
with advanced climate models to predict the future
effects of climate change on species, thus
anticipating risk situations and guiding targeted
conservation interventions.
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Furthermore, predictive analytics techniques
may help to identify the areas most vulnerable to
habitat loss or invasion by alien species, allowing
for the implementation of preventive policies and
effective conservation strategies before the
damage becomes irreversible.

Additionally, machine learning is a valuable
tool for analyzing and interpreting biological data,
particularly genetic data (Greener et al., 2022).
Biodiversity conservation also involves protecting
the genetic heritage of species, a key element for
their ability to adapt and survive.

Through sophisticated genetic databases,
learning algorithms can identify genetic diversity
within animal and plant populations, monitor the
presence of harmful mutations, and design more
effective repopulation interventions.

Digital gene banks, integrated with Al systems,
also allow for the virtual and physical preservation
of DNA, seed, and tissue samples, facilitating the
exchange of information between research centers
around the world and accelerating the
development of customized conservation
strategies for endangered species (Marinelli et al.,
2022).

Among the artificial intelligence techniques
increasingly applied in climate science, clustering
has proven particularly valuable (Straus, 2019). As
an unsupervised learning approach, it enables the
identification of hidden patterns and recurrent
configurations within large and heterogeneous
climate datasets. When applied to high-resolution
reanalysis datasets like ERAS5, clustering methods
allow the detection of co-occurring anomalies in
temperature, precipitation, soil moisture, or wind
patterns, providing deeper insights into the
mechanisms driving compound extremes. This
approach enhances both the understanding and
the prediction of multi-hazard climate
interactions, ultimately supporting more targeted
adaptation and risk management strategies for
vulnerable ecosystems and human systems.

5. Clustering of compound events

While clustering techniques are usually
adopted in grouping single variables, the analysis
of complex systems requires the development of
techniques that cope with more variables at the
same type. This is particularly needed in the study
of compound climate events. These are situations
in which two or more climate drivers and/or
hazards interact, either simultaneously or
sequentially, to produce impacts that are
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substantially different and often more severe than
the sum of their individual effects. These events
arise from statistical dependence among climatic
variables (e.g., temperature, precipitation,
humidity, wind) and are increasingly recognized
as critical drivers of risk in both ecological and
socio-economic systems (Bevacqua et al., 2021).

Compound climate extremes refer to events in
which multiple climatic or environmental
variables interact simultaneously, producing
outcomes that often generate disproportionately
severe impacts on both human societies and
ecosystems. The likelihood of such events is
directly influenced by the degree of dependence
among their underlying drivers. Generally, the
stronger the correlation, the higher the probability
of co-occurrence. Within the risk framework,
compound events primarily relate to the hazard
component, where the probability of an extreme
climatic condition carries the potential for large-
scale impacts. Any change in the likelihood of
hazards consequently alters overall risk.

Tab. 1: Examples of compound climate events

Hazard Main drivers | Example cases
Drought Precipitation, Europe 2003
evapotranspira (Vicente-
tion, soil Serrano et al.,
moisture, 2010)
temperature
Fire risk Temperature, Australia 2019-
precipitation, | 20 (Nolan et al.,
relative 2020)
humidity, wind,
lightning
Drought+Heat Temperature, Russia-Europe
precipitation, 2010
evapotranspira (Barriopedro
tion, etal, 2011)
atmospheric
humidity
Wind + Wind speed, Storm Kyrill
precipitation precipitation, 2007 (Pinto et
extremes orography, al,, 2009)
large-scale
atmospheric
circulation
Importantly, many major climate- and
weather-related  disasters are inherently

compound in nature, as the convergence of two or
more factors, individually not necessarily extreme,
can quickly exceed the adaptive capacity of
ecological or social systems. Under conditions of
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global warming, such compound events are
expected to occur more frequently, while the
likelihood of unprecedented and unexpected
combinations will also increase, further amplifying
uncertainty in risk assessment and management.
In Table 1 we provide some examples of climate
events that in literature are already considered
compound.

As regards a possible analysis of data, a study
on compound climate events faces huge and
complex datasets: thousands of measurements of
temperature, rainfall, humidity, wind, soil
moisture, and more, collected across long time
periods and wide regions. In Fig. 3, we show an
example of pairs of climatological events that are
strongly correlated. The figure represents the joint
distribution of maximum air temperatures and
mean soil moistures, i.e., the statistical
relationship between the two variables, collected
over a station in South Italy from 1940 till 2024 in
the summers (June-July-August, Copernicus
Climate Change Service, 2025).

—273.050

—273.075

Soil moisture

—273.100

30 35 40
Air temperature

Fig. 3: Joint distribution of maximum air temperature and
mean soil moisture observed at a station in Southern Italy
during summer seasons from 1940 to 2024

Looking at single variables one by one does not
capture how extremes combine. This is where
clustering becomes useful. Clustering is a
statistical technique that groups together events
that are similar, where the similarity is defined
based on several characteristics shown by the data
at the same time. For example, in Figure 4, we
show two possible ways to cluster a set of objects
based on two different characteristics: the colours
(a) or the shapes (b).
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Fig. 4: Example of two clustering approaches applied to
the same set of objects: (a) grouping by colour and (b)
grouping by shape

From a mathematical point of view, the
similarity or dissimilarity between elements is
generally measured using a concept called
distance. A distance quantifies how far apart two
objects are. There are different ways to define it
depending on what we want to capture.

The most familiar is the Euclidean distance,
which corresponds to the straight-line distance
between two points in space as shown in Figure 5.
The Manhattan distance, instead, indicates how far
you'd have to travel if you could only move
up/down and left/right - like driving along city
blocks in Manhattan (that’s where the name comes
from!).



SCIRES (2025), Special Issue

A. Benevento, F. Durante

Euclidean vs. Manhattan Distance

Manhattan

Fig. 5: Comparison between Euclidean distance (straight-
line distance between two points) and Manhattan distance
(path distance restricted to horizontal and vertical moves)

However, when the objects we compare are
more complex, such as probability distributions,
rather than single points, more sophisticated
measures are involved. One important example is
the Wasserstein distance (Fig. 6). It can be
understood as the minimum amount of work
required to transform one distribution into
another, where work means shifting probability
mass across space.

The Wasserstein Distance
0.4

0.3

Distributjon 1 Diskibution 2

Wassarstein distance

0.1

0.0

Fig. 6: Example of Wasserstein distance for optimally
transporting one distribution into another

Thus, the choice of distance measure depends
on the nature of the data: simple geometric
distances work well for points, while more
advanced notions such as the Wasserstein
distance are needed for comparing entire
distributions.

By identifying these clusters it is possible, for
example, to recognize which combinations of
variables lead to extreme impacts, to quantify how
often each type of event occurs or to detect
emerging event types that were rare in the past but
could become common in future climates. Thus,
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clustering helps translate raw climate data into
meaningful groups of compound events that can
be more easily studied, compared, and
communicated. Instead of thousands of scattered
data points, we get a smaller set of well-defined
risk profiles that can be used for further analysis.

6. Clustering of compound events: an application

We want to show an application of clustering
techniques to climatological data. The main
methodology has been described in detail in
Benevento and Durante (2023), Benevento et al.
(2024), Castrovilli et al. (2024).

As regards the clustering algorithm, we apply a
hierarchical clustering with the average linkage
method. The optimal number of clusters was
determined in a data-driven way using the Dunn
index (Dunn, 1974), an internal validity measure
that evaluates the ratio between the smallest inter-
cluster distance and the largest intra-cluster
distance, thus favoring compact and well-
separated clusters.

Specifically, we consider a grid of 527 sites
over Italy. At each site (s;) we collect a random
vector (X1, X;) representing two time series, each
related to a particular feature of the phenomenon
under consideration: X; represents the time series
of hourly maximum temperatures for the months
of June, July, and August (JJA) from 2014 to 2024;
X, represents the hourly potential
evapotranspiration (hPet) computed via the
Penman-Monteith measure in the same period.

The data have been downloaded from the
ERAS dataset (Copernicus Climate Change Service,
2025). The obtained time series have no seasonal
component, but may present a trend due to climate
change. Thus, we estimate and remove a linear
trend fitted by regression to obtain the detrended
time series of seasonal maxima/averages. In this
way, we focus on the detection of the anomalies in
each time series, since we disentangle the effects
of long-term climatological trends.

Given the assertion concerning the co-
occurrence of the events, we take advantage of the
opportunities offered by the class of bivariate
Extreme Value (EV) copulas to formalize this fact
into a mathematical model (Durante and Sempi,
2016; Salvadori et al., 2007).

The class of bivariate EV copulas represents a
family of dependence models specifically designed
to describe the joint behavior of two variables
under extreme conditions. These copulas capture
how two extreme events are likely to occur
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together, even when each follows a different
marginal distribution. Unlike standard copulas, EV
copulas are characterized by their ability to model
the tail dependence, that is, the probability that
both variables simultaneously take on very large
values. This property makes them particularly
suitable for analyzing compound events, where the
co-occurrence of extremes plays a critical role in
risk assessment.

For example, in Fig. 7 we show two simulated
time series representing correlated -climate
variables generated using a Gumbel copula, which
induces strong upper-tail dependence. The red
dashed lines indicate the 95th percentile
thresholds for each variable, while the red points
mark time steps where both series simultaneously
exceed their respective thresholds.

Series 1

Value

100
Time

150 200

Series 2

Value
N=a2O=N

100
Time

150

200

Fig. 7: lllustration of upper-tail dependence in compound
events

The first clustering experiment focuses on
comparing the probability laws of each attribute X;
with i=1,2, across all sites. Specifically, we analyze
the dissimilarity among the distributions of the
anomalies of temperature maxima and the hPet,
respectively. For a given attribute i, the
dissimilarity between two sites s, and s, is
quantified through the Wasserstein distance dy;,
between their empirical probability distributions:

8oor = dw (Xi(s0), Xi(s))
1 1/2
= <f |Fo™ (W) — Fp,~ ()| du)
0

where F,”' and F, ! denote the quantile
functions associated with X;(sp,) and X;(sp,),
respectively. The resulting dissimilarity matrix has
dimensions 527x527, where 527 is the number of
geographical locations under consideration.
Notice that only land sites are included in the
analysis. This choice, which serves merely as an
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example of how the proposed method can be
applied to cluster a set of objects, was made to
improve the clarity and interpretability of the final
cluster representation. Nevertheless, the influence
of the sea on the climate is still evident, as shown
in Figure 8a, where coastal areas display patterns
that differ from those observed in more
continental regions.

The clustering approach explored to this point
allows us to group together locations that share
similar marginal distributions of a given climatic
variable. Hence, no compound effects are explicitly
modeled in this stage: each cluster reflects areas
with a comparable “marginal” behavior, that is, a
similar level of temperature-related or hPet-
related risk.
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Fig. 8: Regionalization obtained with respect to
Temperatures (a) and hPet (b) in the summer period from
2014 to 2024 across the whole Italian territory.
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Such clustering provides a preliminary
understanding of spatial coherence in single-
variable extremes (see Fig. 8) before exploring
joint dependencies between attributes.

The second clustering approach focuses on the
dependence between attributes at each site rather
than on their marginal distributions.

For every location, a copula is estimated from
the two variables using pseudo-observations
derived from their normalized ranks.

Each site is thus represented by a copula C,
that summarizes the local dependence pattern.The
dissimilarity between sites s, and s,, is quantified
through the Wasserstein distance between their
copulas,

8ppr = dy (Cp, Coy).

To compute this distance, we rely on the class
of bivariate EV copulas, each associated with a
Kendall distribution function K(u), which
describes how the dependence encoded by a
copula C is distributed over the unit square
(Salvadori et al., 2007).
The comparison between sites
expressed as

dw(Ce,Cp) = dy (ch» Kce,)'

their

is therefore

which reflects differences in
dependence structure.

This clustering procedure groups together
sites that share similar cross-attribute behavior,
emphasizing areas where compound events tend
to manifest in a comparable way, as shown in Fig.9.

By jointly analyzing multiple variables, we can
identify hidden patterns and correlations that may
remain undetected when studying each factor in
isolation.

joint

7. Conclusions

The interdependence between climate change
and biodiversity loss requires analytical
frameworks capable of capturing the complexity of
their interactions. In this work, we have illustrated
how the integration of Artificial Intelligence and
statistical methods can  enhance our
understanding of multifactorial environmental
phenomena, with a special focus on clustering on
compound events.

The proposed methodology not only supports
the exploration of large climatological datasets but
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also provides a flexible foundation for predictive
modeling and scenario analysis.
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Fig. 9: Regionalization obtained by simultaneously
comparing Temperatures and hPet, in the summer period
from 2014 to 2024 across Italy. Comparison of the double

probability laws observed at each site.

Such tools are essential for informing policy
decisions, improving environmental monitoring
systems, or proposing new strategies to mitigate
the impacts of climate and ecological disruptions.

Moreover, a Dbetter understanding of
compound events and their associated risk may
help in the understanding of biodiversity effects. In
fact, the growing risk of compound event
occurrence has the potential to erode the ability of
biodiversity features to anticipate, absorb or
recover from the effects of future environmental
changes, representing a growing challenge for
global biodiversity conservation (Ameca et al,
2024).
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