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Abstract 

Climate change and biodiversity loss are two of the most pressing challenges of recent decades. While the former has received 
significant attention from both the scientific community and the public, the latter often remains in the background. 
Nevertheless, the two phenomena are deeply interconnected, and Artificial Intelligence (AI), through machine learning and 
predictive modeling, provides valuable means to help address some of the global challenges they present. In particular, AI 
can be employed to predict the risks and impacts associated with climate change, providing information that directly 
contributes to a better understanding of biodiversity dynamics and vulnerabilities. In this work, we present an application of 
a machine learning method, namely the clustering of compound events, to demonstrate how the joint analysis of two or more 
interacting factors can provide a more comprehensive understanding of socio-environmental phenomena. 
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1.   Introduction 

In October 2024, a devastating flood resulted 
in the death of 228 individuals in Valencia. 
Approximately 360000 people were left without 
access to potable water for many days, while 
50000 experienced a prolonged lack of electricity. 
The estimated economic damage amounted to 16.5 
billion euros (Calvo-Sancho et al., 2025). The flood 
also severely impacted biodiversity, particularly at 
the Albufera Natural Park, by inundating the area 
with plastic waste, sewage, and other debris, 
contaminating the habitat and threatening species 
like the endangered Valencia toothcarp (see, for 
instance, Chauvet, 2024). 

In Los Angeles, on January 7th, 2025, severe 
wildfires led to the death of 29 people. Around 
150000 individuals were displaced, 10000 houses 
were destroyed, and the full extent of the damages 
is still under assessment (Clemens, 2025). Also in 
this case, the event negatively impacted 
biodiversity through habitat destruction, 
displacement of wildlife, and soil erosion that 
harms aquatic ecosystems (see, for instance, 

Senzaki and Deehan, 2025). 
These events can be interpreted as examples of 

the direct consequences of ongoing climate 
change. In fact, recent analyses (Calvo-Sancho et 
al., 2025) indicate that human-induced global 

warming significantly increased both the intensity 
and likelihood of the Valencia flood. These findings 
are consistent with broader assessments from the 
IPCC Sixth Assessment Report (2023), which 
emphasize the growing attributional link between 
anthropogenic climate change and the 
intensification of extreme weather events 
worldwide. The climate emergency is now both 
present and pressing. 

At the same time, it has been recognized that 
climate change is also contributing to biodiversity 
loss and change (Urban, 2015). Extreme climatic 
events such as cyclones, droughts, floods or 
heatwaves can generate severe consequences on 
biodiversity. 

What remains less widely acknowledged is 
that biodiversity is also a powerful ally in 
confronting climate change and increasing societal 
resilience. However, this resource is insufficiently 
valued and utilized. 

In 2018, the storm known as Vaia struck Italy, 
particularly the Triveneto area. The event caused 
the death of 37 people and inflicted damages 
amounting to 5 billion euros. Within three days, 
precipitation reached 715 millimeters, an amount 
that, under normal conditions, would fall over the 
course of an entire year. Vast areas of fallen trees 
in locations such as the Pinè plateau in the Gorai 
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mountain chain became emblematic of the 
meteorological disaster (Chirici et al., 2019). 

Notably, the storm disproportionately affected 
monocultures of Norway spruce. This species, 
highly valued for its rapid growth and timber yield, 
requires only eighty years before harvesting, 
compared to approximately twice as many years 
for oak. For this reason, since the late 1800s, 
Norway spruce plantations were established 
widely across the Alpine arc, replacing native 
broadleaf forests (Candotti et al., 2025). 

The reforestation of areas affected by Vaia 
represents a relevant case study for analyzing 
adaptive management strategies in forest 
ecosystems under increasing climatic variability. 
The extensive damage to monocultural stands of 
Norway spruces revealed the structural fragility of 
homogeneous systems when exposed to extreme 
meteorological stress. This observation aligns with 
existing evidence that biodiversity enhances the 
capacity of ecosystems to recover from disasters 
(e.g., Holling, 1973; Folke et al., 2004). 

Post-disturbance management should 
therefore aim to promote mixed forest structures, 
rather than replicating pre-existing monocultures. 
Diversified systems have been shown to reduce 
the propagation of damage and the economic 
losses, and stabilize ecological processes over time 
(Thompson et al., 2009). While such approaches 
may entail higher management complexity, they 
contribute to lowering systemic risk across 
temporal and spatial scales. 

The Vaia event hence underscores the need to 
reinterpret the environmental (extreme) events as 
a complex socio-ecological system whose 
quantification and (spatio-temporal) modeling 
remain essential for informed decision-making. 
Biodiversity, in this framework, constitutes a 
functional component of resilience rather than a 
purely ecological variable. 

In fact, biodiversity encompasses the full range 
of plants, animals, and microorganisms present on 
Earth, constituting the biological wealth of the 
planet. All organisms have co-evolved, forming 
complex interconnections and interdependencies 
akin to a web. While the rupture of a few 
connections may not compromise the system 
entirely, the loss of many would result in collapse.  

The mathematical theory of complex systems 
provides a comprehensive framework for the 
analysis of systems composed of multiple 
interacting components whose collective behavior 
cannot be fully understood by examining 

individual elements in isolation. Such systems can 
be conveniently represented by random variables 
that, although seemingly governed by underlying 
rules, may reveal hidden patterns upon closer 
examination. 

Specifically, here we illustrate compound 
(weather and climate) events (Leonard et al., 
2014) that arise from the combination of multiple 
drivers that together may generate societal or 
environmental risks. Many major climate-related 
disasters, such as droughts and storms, result from 
such compound events, during which interacting 
drivers exceed the coping capacity of affected 
systems.  

Even though our understanding of climate 
extremes and associated impacts is continuously 
improving, events that break the coping capacity 
of social and environmental systems often 
surprise us. This is because most current risk 
estimates tend to overlook the risks associated 
with correlated compound drivers. 

Studying compound events often requires a 
multidisciplinary approach combining domain 
knowledge of the underlying processes with, for 
example, statistical methods, climate model 
outputs and, more recently, AI (Artificial 
Intelligence) algorithms. In this work, after 
examining the link between climate change and 
biodiversity, we illustrate the application of 
compound events in this context and highlight 
some of their potential uses. 

2.   Climate changes and biodiversity: two 
dimensions and a common challenge 

As noted above, climate change and 
biodiversity are closely interconnected. 
Nevertheless, a comparison between the two 
reveals three fundamental differences: awareness, 
impact, and measurement (as underlined in the 
TEDx talk of Castellucci, 2025). 

In terms of awareness, climate change has 
become central to public debate and widely 
recognized as the most urgent environmental 
crisis. Biodiversity loss, despite being one of the 
first crises acknowledged by the scientific 
community, has not received equivalent visibility. 
For instance, search data indicate that “climate 
change” is searched globally up to three times 
more often than “biodiversity”. This imbalance is 
reflected in media coverage and institutional 
attention. 

The institutional response highlights further 
disparities. The Conference of the Parties (COP) on 
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climate was established in 1992 during the Rio 
Earth Summit, and by 2025 will have convened 30 
sessions since its inaugural meeting in Berlin in 
1995. In contrast, the COP on biodiversity, 
initiated in Nassau in 1994, has convened only 16 
times. This discrepancy underscores how global 
governance prioritizes climate over biodiversity. 

The second difference lies in impact. 
Greenhouse gases disperse uniformly across the 
atmosphere, producing global consequences 
irrespective of the continent of origin. In contrast, 
biodiversity loss manifests primarily at the local 
scale, such as the disappearance of forests in the 
Amazon or grasslands in Europe. Although the 
impacts are initially local, their cumulative effects 
amount to a global crisis. 

The third distinction concerns measurement. 
Climate change can be quantified using carbon 
dioxide equivalent (CO₂e), a metric that 
consolidates emissions into a single comparable 
value. Biodiversity, however, involves multiple 
interacting dimensions, making the establishment 
of a synthetic metric challenging (Colwell, 2009; 
Daly et al., 2018; Pallara, 2024). A possible solution 
is the Mean Species Abundance (MSA) index, 
which evaluates how close an ecosystem is to its 
natural state on a scale from zero (completely 
degraded) to one hundred (undisturbed). 

Technological tools aid in assessing 
biodiversity through a combination of satellite 
imagery, in-field sensors, and DNA analysis. For 
instance, acoustic sensors can monitor pollinators, 
particularly wild bees (Barlow & O’Neill, 2020), by 
capturing sound frequencies and species presence. 
Satellite imagery, processed through Artificial 
Intelligence, segments the Earth’s surface into 
classified land-use categories, enabling a detailed 
mapping of natural and anthropogenic areas. By 
comparing these classifications to reference 
baselines, the MSA can be estimated and applied 
across diverse ecosystems, from deserts to 
rainforests. Crucially, MSA reflects not the quantity 
but the quality of biodiversity relative to natural 
conditions, allowing equitable comparisons across 
ecosystems of varying richness. 

Despite this difference in approach, climate 
change and biodiversity are strongly correlated. 
According to the Global assessment report of the 
Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES, 
2019), climate change is one of the five drivers that 
have affected biodiversity in the past 50 years. 
Observational evidence indicates an accelerating 

rate of environmental change across marine, 
terrestrial, and freshwater ecosystems, with direct 
repercussions on agriculture, aquaculture, 
fisheries, and ecosystem services. The combined 
action of multiple anthropogenic drivers produces 
compound effects that amplify impacts beyond the 
contribution of individual factors. Such dynamics 
are increasingly documented in diverse 
ecosystems, from coral reefs and Arctic 
environments to savannas, where interacting 
stressors lead to nonlinear responses and 
potential regime shifts. 

Various forms of pollution and the 
proliferation of invasive alien species further 
intensify these pressures. Despite regional 
variability, atmospheric, terrestrial, and aquatic 
pollution levels have continued to rise in several 
areas. Marine plastic contamination, for instance, 
has increased more than tenfold since 1980, 
affecting hundreds of species and propagating 
through trophic networks with potential 
implications for human health. Concurrently, the 
number of recorded alien species has grown by 
approximately 40% since 1980, largely driven by 
global trade and human mobility (IPBES, 2019). 
Nearly one fifth of the planet’s land surface is now 
considered vulnerable to biological invasions, with 
cascading effects on biodiversity, ecosystem 
functions, and socio-economic stability. 

Given the accelerating pace and 
interconnected nature of these processes, 
investigating compound effects, that is, the 
interactions among multiple concurrent 
environmental drivers, has become a scientific and 
societal urgency. Traditional single-factor 
analyses are no longer sufficient to capture the 
emergent behavior of coupled human–natural 
systems. As highlighted in Boero (2024), the 
coupling of atmospheric and oceanographic 
processes, together with coastal and seabed 
geomorphology, plays a crucial role in determining 
physical dynamics, while human activities 
increasingly modify atmospheric, terrestrial, and 
aquatic features. Moreover, biotic interactions, in 
concert with physical drivers, are fundamental in 
shaping biodiversity composition and ecosystem 
functioning.  

Thus, developing integrative frameworks 
capable of quantifying, modeling, and predicting 
such interactions is essential for anticipating 
critical thresholds, guiding adaptive management, 
and informing policy responses under increasing 
climatic and ecological uncertainty.  
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In the following sections, we present a recent 
methodology (compound events) that serves to 
describe those phenomena that are caused by 
several factors or have multiple effects (e.g., 
droughts, heat waves, wildfires, and air pollution). 
In fact, although its use has so far been mainly 
focused on climate-related events, it can also be 
valuable for biodiversity studies, as these are 
likewise characterized by a multitude of drivers 
and factors. 

3.   Climate changes and biodiversity: a statistical 
tale 

The study of climate changes and biodiversity 
requires a rigorous statistical analysis of long-
term environmental data. Over the past century, 
global average surface temperatures have 
increased by approximately 1.1°C compared to 
pre-industrial levels, with a marked acceleration 
observed since the 1970s (IPCC, 2023). This trend 
is strongly correlated with the rise in atmospheric 
concentrations of greenhouse gases, particularly 
carbon dioxide (CO₂), methane (CH₄), and nitrous 
oxide (N₂O), which have reached levels 
unprecedented in at least the last 800000 years. 

Time-series analyses of meteorological and 
satellite datasets confirm both the upward 
trajectory of mean global temperatures and the 
increased variability of climatic patterns.  For 
example, in Figure 1 we show the data of the 
monthly maximum temperatures in summer 
(June-July-August) from 1960 to 2024 in a station 
located in Southern Germany. The blue line 
interpoles the actual data, while the red line shows 
the linear trend of the data. It shows an increasing 
trend that can be observed in most parts of the 
world. To build Fig. 1 we have used the data 
extracted from the ERA5 dataset (Copernicus 
Climate Change Service, 2025), which collects 
global climate and weather data of the past 8 
decades. 

Extreme events, including floods, wildfires, 
heatwaves, and droughts, exhibit a statistically 
significant increase in frequency and intensity. For 
instance, precipitation anomalies demonstrate not 
only greater deviation from historical averages but 
also an altered distribution, with episodes of 
extreme rainfall concentrated in shorter periods. 
Similarly, the incidence of large-scale wildfires has 
risen in correlation with prolonged droughts and 
elevated mean seasonal temperatures. 

 

Fig. 1: Temperature time series trend from1960 to 2024 
in a station located in Southern Germany 

 
Statistical modeling, employing regression 

analyses and probabilistic forecasting, indicates 
that these observed phenomena cannot be 
attributed solely to natural variability. Instead, 
anthropogenic factors are the dominant drivers, as 
confirmed by the Intergovernmental Panel on 
Climate Change (IPCC, 2023). The use of 
representative concentration pathways (RCPs) 
and shared socioeconomic pathways (SSPs) 
further enables projections of future climatic 
conditions under different emissions scenarios. 

From a biodiversity perspective, these 
statistical trends underscore the urgency of 
integrating climate metrics with ecological 
indicators. While CO₂ equivalent serves as a 
synthetic and widely adopted measure of 
anthropogenic impact, its intersection with 
biodiversity indices such as Mean Species 
Abundance (MSA) may provide a more integrated 
understanding of the cascading consequences of 
climate change on ecosystems. 

Another indicator used to quantify biodiversity 
is the Living Planet Index (LPI), which provides a 
complementary perspective on global ecological 
change. The LPI is a composite indicator that 
tracks the state of global biodiversity by 
measuring the average change in abundance of 
vertebrate species populations over time. 
Developed by the Zoological Society of London and 
WWF (Zoological Society of London & WWF, 
2025), the index aggregates thousands of 
population time series for mammals, birds, 
amphibians, reptiles, and fish across all major 
biogeographical regions. Values are normalized to 
100 in 1970, meaning that any subsequent 
decrease reflects an overall decline in population 
abundance relative to that baseline. 
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Figure 2 shows the temporal evolution of the 
LPI across different world regions from 1970 to 
2020. The data have been downloaded from the 
World Wildlife Fund and Zoological Society of 
London (2025), processed by Our World in Data. 
The index value considers the change in 
abundance in 34836 populations across 5495 
native species both terrestrial and marine. 

 
 

 

Fig. 2: Living Planet Index by region (1970–2020) 

 
The general trend reveals a substantial decline 

in biodiversity, particularly pronounced in tropical 
and developing regions such as Latin America and 
Africa, whereas some temperate regions (e.g., 
Europe and North America) show relatively 
smaller decreases or partial stabilization. The 
global curve (in pink) indicates an overall 
reduction of around 60% in average population 
sizes since 1970. 

When considered together with the increasing 
trends in maximum temperature illustrated above, 
these results highlight the urgent need to better 
understand the complex interconnections 
between climate change and biodiversity loss. 
Rising temperatures, habitat degradation, and 
other anthropogenic pressures jointly may have 
contributed to the observed declines in wildlife 
populations, underlining the importance of 
integrating climate–biodiversity conservation 
strategies. 

 
4.   Climate changes and biodiversity: the role of AI 
 

Artificial intelligence (AI) is emerging as a 
transformative tool in addressing the multifaceted 
challenges of climate change, offering new 
pathways for both mitigation and adaptation. 
Through advanced data analytics, machine 

learning, and predictive modeling, AI can enhance 
the precision of climate forecasting, optimize 
energy systems, and support the transition toward 
low-emission technologies (see, e.g., De Padova et 
al., 2024). In the environmental domain, AI can 
facilitate the monitoring of land use, water 
resources, and biodiversity. These applications 
can help identify habitat changes and contribute to 
efforts aimed at protecting ecosystems. Beyond 
technical innovation, AI also plays a crucial role in 
integrating diverse climate data sources thereby 
strengthening decision-making frameworks in 
agriculture, disaster management, and urban 
planning. However, the deployment of AI in 
climate research is not without risks. High 
computational energy consumption, biases in 
environmental datasets, and unequal access to 
digital infrastructure may inadvertently reinforce 
existing vulnerabilities. Ensuring that AI 
development aligns with principles of 
transparency, equity, and sustainability is 
therefore essential to realizing its potential as an 
ally in climate action. 

Recent research initiatives (e.g., Naughtin et al., 
2025) emphasize the need for interdisciplinary 
collaboration to ensure that AI systems contribute 
not only to emissions reduction and resource 
optimization but also to the protection of 
biodiversity and ecosystem services, which remain 
foundational to global climate resilience. 

Another aspect that has been revolutionized in 
recent years thanks to advances in digital 
technologies and AI is the approach to biodiversity 
protection (see, e.g., De Nunzio & Rizzo, 2024; 
Ullah et al., 2025). Traditionally, monitoring 
ecosystems and species required significant 
resources, lengthy timeframes, and manual 
interventions, often limited by logistical 
challenges. Today, thanks to machine learning 
algorithms and advanced data analysis systems, it 
is possible to process enormous amounts of 
information from diverse sources quickly, 
enabling real-time and highly detailed insights. 

AI, for example, allows us to monitor animal 
and plant species through images, sounds, or 
environmental data collected in the field, 
identifying their presence, movements, and 
behaviors without directly interfering with their 
natural habitat. This data can be cross-referenced 
with advanced climate models to predict the future 
effects of climate change on species, thus 
anticipating risk situations and guiding targeted 
conservation interventions. 
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Furthermore, predictive analytics techniques 
may help to identify the areas most vulnerable to 
habitat loss or invasion by alien species, allowing 
for the implementation of preventive policies and 
effective conservation strategies before the 
damage becomes irreversible. 

Additionally, machine learning is a valuable 
tool for analyzing and interpreting biological data, 
particularly genetic data (Greener et al., 2022). 
Biodiversity conservation also involves protecting 
the genetic heritage of species, a key element for 
their ability to adapt and survive. 

Through sophisticated genetic databases, 
learning algorithms can identify genetic diversity 
within animal and plant populations, monitor the 
presence of harmful mutations, and design more 
effective repopulation interventions. 

Digital gene banks, integrated with AI systems, 
also allow for the virtual and physical preservation 
of DNA, seed, and tissue samples, facilitating the 
exchange of information between research centers 
around the world and accelerating the 
development of customized conservation 
strategies for endangered species (Marinelli et al., 
2022). 

Among the artificial intelligence techniques 
increasingly applied in climate science, clustering 
has proven particularly valuable (Straus, 2019). As 
an unsupervised learning approach, it enables the 
identification of hidden patterns and recurrent 
configurations within large and heterogeneous 
climate datasets. When applied to high-resolution 
reanalysis datasets like ERA5, clustering methods 
allow the detection of co-occurring anomalies in 
temperature, precipitation, soil moisture, or wind 
patterns, providing deeper insights into the 
mechanisms driving compound extremes. This 
approach enhances both the understanding and 
the prediction of multi-hazard climate 
interactions, ultimately supporting more targeted 
adaptation and risk management strategies for 
vulnerable ecosystems and human systems. 

5.   Clustering of compound events 

While clustering techniques are usually 
adopted in grouping single variables, the analysis 
of complex systems requires the development of 
techniques that cope with more variables at the 
same type. This is particularly needed in the study 
of compound climate events. These are situations 
in which two or more climate drivers and/or 
hazards interact, either simultaneously or 
sequentially, to produce impacts that are 

substantially different and often more severe than 
the sum of their individual effects. These events 
arise from statistical dependence among climatic 
variables (e.g., temperature, precipitation, 
humidity, wind) and are increasingly recognized 
as critical drivers of risk in both ecological and 
socio-economic systems (Bevacqua et al., 2021). 

Compound climate extremes refer to events in 
which multiple climatic or environmental 
variables interact simultaneously, producing 
outcomes that often generate disproportionately 
severe impacts on both human societies and 
ecosystems. The likelihood of such events is 
directly influenced by the degree of dependence 
among their underlying drivers. Generally, the 
stronger the correlation, the higher the probability 
of co-occurrence. Within the risk framework, 
compound events primarily relate to the hazard 
component, where the probability of an extreme 
climatic condition carries the potential for large-
scale impacts. Any change in the likelihood of 
hazards consequently alters overall risk. 

 

Tab. 1: Examples of compound climate events 

Hazard Main drivers Example cases 
Drought Precipitation, 

evapotranspira
tion, soil 
moisture, 

temperature 

Europe 2003 
(Vicente-

Serrano et al., 
2010) 

Fire risk Temperature, 
precipitation, 

relative 
humidity, wind, 

lightning 

Australia 2019-
20 (Nolan et al., 

2020) 

Drought+Heat Temperature, 
precipitation, 

evapotranspira
tion, 

atmospheric 
humidity 

Russia-Europe 
2010 

(Barriopedro 
et al., 2011) 

Wind + 
precipitation 

extremes 

Wind speed, 
precipitation, 

orography, 
large-scale 

atmospheric 
circulation 

Storm Kyrill 
2007 (Pinto et 

al., 2009) 

 
Importantly, many major climate- and 

weather-related disasters are inherently 
compound in nature, as the convergence of two or 
more factors, individually not necessarily extreme, 
can quickly exceed the adaptive capacity of 
ecological or social systems. Under conditions of 
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global warming, such compound events are 
expected to occur more frequently, while the 
likelihood of unprecedented and unexpected 
combinations will also increase, further amplifying 
uncertainty in risk assessment and management. 
In Table 1 we provide some examples of climate 
events that in literature are already considered 
compound. 

As regards a possible analysis of data, a study 
on compound climate events faces huge and 
complex datasets: thousands of measurements of 
temperature, rainfall, humidity, wind, soil 
moisture, and more, collected across long time 
periods and wide regions. In Fig. 3, we show an 
example of pairs of climatological events that are 
strongly correlated. The figure represents the joint 
distribution of maximum air temperatures and 
mean soil moistures, i.e., the statistical 
relationship between the two variables, collected 
over a station in South Italy from 1940 till 2024 in 
the summers (June-July-August, Copernicus 
Climate Change Service, 2025). 

 

 

Fig. 3: Joint distribution of maximum air temperature and 
mean soil moisture observed at a station in Southern Italy 

during summer seasons from 1940 to 2024 

 
Looking at single variables one by one does not 

capture how extremes combine. This is where 
clustering becomes useful. Clustering is a 
statistical technique that groups together events 
that are similar, where the similarity is defined 
based on several characteristics shown by the data 
at the same time. For example, in Figure 4, we 
show two possible ways to cluster a set of objects 
based on two different characteristics: the colours 
(a) or the shapes (b). 

 
 

(a) 
 

 

 
 

(b) 

 
 

Fig. 4: Example of two clustering approaches applied to 
the same set of objects: (a) grouping by colour and (b) 

grouping by shape 
 
 

From a mathematical point of view, the 
similarity or dissimilarity between elements is 
generally measured using a concept called 
distance. A distance quantifies how far apart two 
objects are. There are different ways to define it 
depending on what we want to capture. 

The most familiar is the Euclidean distance, 
which corresponds to the straight-line distance 
between two points in space as shown in Figure 5. 
The Manhattan distance, instead, indicates how far 
you’d have to travel if you could only move 
up/down and left/right - like driving along city 
blocks in Manhattan (that’s where the name comes 
from!). 
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Fig. 5: Comparison between Euclidean distance (straight-
line distance between two points) and Manhattan distance 
(path distance restricted to horizontal and vertical moves) 

 
However, when the objects we compare are 

more complex, such as probability distributions, 
rather than single points, more sophisticated 
measures are involved. One important example is 
the Wasserstein distance (Fig. 6). It can be 
understood as the minimum amount of work 
required to transform one distribution into 
another, where work means shifting probability 
mass across space. 

 

 

 

Fig. 6: Example of Wasserstein distance for optimally 
transporting one distribution into another 

 
Thus, the choice of distance measure depends 

on the nature of the data: simple geometric 
distances work well for points, while more 
advanced notions such as the Wasserstein 
distance are needed for comparing entire 
distributions. 

By identifying these clusters it is possible, for 
example, to recognize which combinations of 
variables lead to extreme impacts, to quantify how 
often each type of event occurs or to detect 
emerging event types that were rare in the past but 
could become common in future climates. Thus, 

clustering helps translate raw climate data into 
meaningful groups of compound events that can 
be more easily studied, compared, and 
communicated. Instead of thousands of scattered 
data points, we get a smaller set of well-defined 
risk profiles that can be used for further analysis. 

6.   Clustering of compound events: an application 

We want to show an application of clustering 
techniques to climatological data. The main 
methodology has been described in detail in 
Benevento and Durante (2023), Benevento et al. 
(2024), Castrovilli et al. (2024). 

As regards the clustering algorithm, we apply a 
hierarchical clustering with the average linkage 
method. The optimal number of clusters was 
determined in a data-driven way using the Dunn 
index (Dunn, 1974), an internal validity measure 
that evaluates the ratio between the smallest inter-
cluster distance and the largest intra-cluster 
distance, thus favoring compact and well-
separated clusters. 

Specifically, we consider a grid of 527 sites 
over Italy. At each site (𝑠ℓ) we collect a random 
vector (𝑋1, 𝑋2) representing two time series, each 
related to a particular feature of the phenomenon 
under consideration: 𝑋1 represents the time series 
of hourly maximum temperatures for the months 
of June, July, and August (JJA) from 2014 to 2024; 
𝑋2 represents the hourly potential 
evapotranspiration (hPet) computed via the 
Penman-Monteith measure in the same period. 

The data have been downloaded from the 
ERA5 dataset (Copernicus Climate Change Service, 
2025). The obtained time series have no seasonal 
component, but may present a trend due to climate 
change. Thus, we estimate and remove a linear 
trend fitted by regression to obtain the detrended 
time series of seasonal maxima/averages. In this 
way, we focus on the detection of the anomalies in 
each time series, since we disentangle the effects 
of long-term climatological trends. 

Given the assertion concerning the co-
occurrence of the events, we take advantage of the 
opportunities offered by the class of bivariate 
Extreme Value (EV) copulas to formalize this fact 
into a mathematical model (Durante and Sempi, 
2016; Salvadori et al., 2007). 

The class of bivariate EV copulas represents a 
family of dependence models specifically designed 
to describe the joint behavior of two variables 
under extreme conditions. These copulas capture 
how two extreme events are likely to occur 
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together, even when each follows a different 
marginal distribution. Unlike standard copulas, EV 
copulas are characterized by their ability to model 
the tail dependence, that is, the probability that 
both variables simultaneously take on very large 
values. This property makes them particularly 
suitable for analyzing compound events, where the 
co-occurrence of extremes plays a critical role in 
risk assessment. 

For example, in Fig. 7 we show two simulated 
time series representing correlated climate 
variables generated using a Gumbel copula, which 
induces strong upper-tail dependence. The red 
dashed lines indicate the 95th percentile 
thresholds for each variable, while the red points 
mark time steps where both series simultaneously 
exceed their respective thresholds. 

 

 

 

Fig. 7: Illustration of upper-tail dependence in compound 
events 

 
The first clustering experiment focuses on 

comparing the probability laws of each attribute 𝑋𝑖  
with i=1,2, across all sites. Specifically, we analyze 
the dissimilarity among the distributions of the 
anomalies of temperature maxima and the hPet, 
respectively. For a given attribute i, the 
dissimilarity between two sites 𝑠ℓ and 𝑠ℓ′ is 
quantified through the Wasserstein distance 𝑑𝑊 
between their empirical probability distributions: 

 

𝛿ℓℓ′ = 𝑑𝑊(𝑋𝑖(𝑠ℓ), 𝑋𝑖(𝑠ℓ′))
 
 

        = (∫ |𝐹ℓ
−1(𝑢) − 𝐹ℓ′

−1(𝑢)|2
1

0

𝑑𝑢)

1/2

 

 

where 𝐹ℓ
−1 and 𝐹ℓ′

−1 denote the quantile 
functions associated with 𝑋𝑖(𝑠ℓ) and 𝑋𝑖(𝑠ℓ′), 
respectively. The resulting dissimilarity matrix has 
dimensions 527×527, where 527 is the number of 
geographical locations under consideration. 
Notice that only land sites are included in the 
analysis. This choice, which serves merely as an 

example of how the proposed method can be 
applied to cluster a set of objects, was made to 
improve the clarity and interpretability of the final 
cluster representation. Nevertheless, the influence 
of the sea on the climate is still evident, as shown 
in Figure 8a, where coastal areas display patterns 
that differ from those observed in more 
continental regions. 

The clustering approach explored to this point 
allows us to group together locations that share 
similar marginal distributions of a given climatic 
variable. Hence, no compound effects are explicitly 
modeled in this stage: each cluster reflects areas 
with a comparable “marginal” behavior, that is, a 
similar level of temperature-related or hPet–
related risk.  

 
 

 
 

(a) 
 

 
 

(b) 

Fig. 8: Regionalization obtained with respect to 
Temperatures (a) and hPet (b) in the summer period from 

2014 to 2024 across the whole Italian territory. 
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Such clustering provides a preliminary 
understanding of spatial coherence in single-
variable extremes (see Fig. 8) before exploring 
joint dependencies between attributes. 

The second clustering approach focuses on the 
dependence between attributes at each site rather 
than on their marginal distributions. 

For every location, a copula is estimated from 
the two variables using pseudo-observations 
derived from their normalized ranks.  

Each site is thus represented by a copula 𝐶ℓ 
that summarizes the local dependence pattern.The 
dissimilarity between sites 𝑠ℓ and 𝑠ℓ′ is quantified 
through the Wasserstein distance between their 
copulas, 

 

𝛿ℓℓ′ = 𝑑𝑊(𝐶ℓ , 𝐶ℓ′). 
 

To compute this distance, we rely on the class 
of bivariate EV copulas, each associated with a 
Kendall distribution function 𝐾𝐶(𝑢), which 
describes how the dependence encoded by a 
copula 𝐶 is distributed over the unit square 
(Salvadori et al., 2007). 
The comparison between sites is therefore 
expressed as 
 

𝑑𝑊(𝐶ℓ , 𝐶ℓ′) = 𝑑𝑊(𝐾𝐶ℓ
, 𝐾𝐶ℓ′

), 
 

which reflects differences in their joint 
dependence structure.  

This clustering procedure groups together 
sites that share similar cross-attribute behavior, 
emphasizing areas where compound events tend 
to manifest in a comparable way, as shown in Fig.9. 

By jointly analyzing multiple variables, we can 
identify hidden patterns and correlations that may 
remain undetected when studying each factor in 
isolation. 
 

7.   Conclusions 

The interdependence between climate change 
and biodiversity loss requires analytical 
frameworks capable of capturing the complexity of 
their interactions. In this work, we have illustrated 
how the integration of Artificial Intelligence and 
statistical methods can enhance our 
understanding of multifactorial environmental 
phenomena, with a special focus on clustering on 
compound events.  

The proposed methodology not only supports 
the exploration of large climatological datasets but 

also provides a flexible foundation for predictive 
modeling and scenario analysis.  
 

 

Fig. 9: Regionalization obtained by simultaneously 
comparing Temperatures and hPet, in the summer period 
from 2014 to 2024 across Italy. Comparison of the double 

probability laws observed at each site. 

 
Such tools are essential for informing policy 

decisions, improving environmental monitoring 
systems, or proposing new strategies to mitigate 
the impacts of climate and ecological disruptions. 

Moreover, a better understanding of 
compound events and their associated risk may 
help in the understanding of biodiversity effects. In 
fact, the growing risk of compound event 
occurrence has the potential to erode the ability of 
biodiversity features to anticipate, absorb or 
recover from the effects of future environmental 
changes, representing a growing challenge for 
global biodiversity conservation (Ameca et al., 
2024).  
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