An Immersive Haptic Experimentation for Dematerialized Textile Perception in Collaborative Design Processes


This experimentation arises in the context of the design process of digital tools in the fashion sector of Made in Italy. The contribution presents an overview of the main insights gained from the analysis of the state of the art and experimentation conducted in order to obtain a low-cost digital textile sampling and restitution process useful for possible new advanced modalities of collaborative remote design. This project is related to the extended MICS partnership of the PNRR project that researches at a low TRL level new scenarios for the integration of immersive technologies in traditional craft processes.


Dematerialization; Haptics; Advanced Simulation; Multimodal Stimulation; Collaboration

Full Text:




D capture software—Adobe Substance 3D Sampler. (n.d.). Retrieved 16 September 2023, Retrived from

D design software for authoring—Adobe Substance 3D. (n.d.). Retrieved 26 March 2024, Retrived from

Adams, R. J., & Hannaford, B. (1999). Stable haptic interaction with virtual environments. IEEE Transactions on Robotics and Automation, 15(3), 465–474. doi:/10.1109/70.768179

Adobe Substance 3D. (n.d.). Your Smartphone Is a Material Scanner Vol. II | Adobe Substance 3D. Retrieved 26 March 2024, from

Ballabeni, M., Fallavollita, F., Foschi, R., & Perugini, G. (2015). Semantic description of three-dimensional models of Bologna porches. SCIRES-IT - SCIentific RESearch and Information Technology, 5(1),31-40. Doi: 10.2423/i22394303v5n1p31

Cao, X., Santo, H., Shi, B., Okura, F., & Matsushita, Y. (2022). Bilateral normal integration. In European Conference on Computer Vision (pp. 552-567). Cham: Springer Nature Switzerland.

Chaos Scans—Chaos Scans—Global Site. (n.d.). Retrieved 26 March 2024, from

Dall’Osso & Pezzi. (2022). Haptic microinteractions, silent details in human-space interaction. In Human Body Interaction (p. 12).

Darktable. (n.d.). Darktable. Retrieved 26 March 2024, from

Details Capture | Photometric Stereo | VFX Grace. (2021, March 4).

El Saddik, A. (2007). The Potential of Haptics Technologies. IEEE Instrumentation & Measurement Magazine, 10(1), 10–17.

Filip, J., & Haindl, M. (2009). Bidirectional Texture Function Modeling: A State of the Art Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 1921–1940.

Gabardi, M., Leonardis, D., Solazzi, M., & Frisoli, A. (2018). Development of a miniaturized thermal module designed for integration in a wearable haptic device. 2018 IEEE Haptics Symposium (HAPTICS), 100–105.

Gu, X., Zhang, Y., Sun, W., Bian, Y., Zhou, D., & Kristensson, P. O. (2016). Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1991–1995.

Haptic Glove for Virtual Reality with Force Feedback | TESLAGLOVE. (n.d.). Teslasuit. Retrieved 23 March 2024, from

HaptiX. (n.d.). Haptic Gloves G1—Gloves for virtual reality and robotics. HaptX. Retrieved 23 March 2024, from

Hayward, V., Astley, O. R., Cruz‐Hernandez, M., Grant, D., & Robles‐De‐La‐Torre, G. (2004). Haptic interfaces and devices. Sensor Review, 24(1), 16–29.

Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction: A framework on physical space and social interaction. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 437–446.

Karuei, I., MacLean, K. E., Foley-Fisher, Z., MacKenzie, R., Koch, S., & El-Zohairy, M. (2011). Detecting vibrations across the body in mobile contexts. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 3267–3276.

Kettner, R., Bader, P., Kosch, T., Schneegass, S., & Schmidt, A. (2017). Towards pressure-based feedback for non-stressful tactile notifications. Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services.

Kim, H., & Hyun, K. H. (2023). HAPmini: 2D haptic feedback generation using single actuator device. PLOS ONE, 18(4), e0285002.

LaValle, Steven M. (2023). Virtual Reality—LaValle.

Liritzis, I., Al-Otaibi, F. M., & Volonakis, P. (2015). DIGITAL TECHNOLOGIES AND TRENDS IN CULTURAL HERITAGE. Mediterranean Archaeology and Archaeometry, 15(3), Article 3.

Maldonado, T., & Maldonado, T. (1992). Reale e virtuale / Tomàs Maldonado. In Reale e virtuale (Nuova ed.). Feltrinelli.

Materialize. (n.d.).

Matthies, D. J. C., Müller, F., Anthes, C., & Kranzlmüller, D. (2013). ShoeSoleSense: Proof of concept for a wearable foot interface for virtual and real environments. Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, 93–96.

Natkin, S., & Yan, C. (2005). Analysis of Correspondences between Real and Virtual Worlds in General Public Applications (p. 332).

Ngan, A., Durand, F., & Matusik, W. (2005). Experimental Analysis of BRDF Models. Rendering Techniques, 2005(16th), 2.

Niehorster, D. C., Li, L., & Lappe, M. (2017). The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research. I-Perception, 8(3), 2041669517708205.

Ornati, M., & Kalbaska, N. (2022). Looking for haptics. Touch digitalization business strategies in luxury and fashion during COVID-19 and beyond. Digital Business, 2(2), 100035.

OWO. (n.d.). OWO. Retrieved 17 September 2023, from

Park, S., Park, Y., & Bae, J. (2022). Performance evaluation of a tactile and kinesthetic finger feedback system for teleoperation. Mechatronics, 87, 102898.

PBR Textures Metallic vs Specular Workflow—A23D. (n.d.). Retrieved 26 March 2024, from

PixPlant. (n.d.).

Pizenberg, M., Quéau, Y., & Elmoataz, A. (2021). Low-Rank Registration of Images Captured Under Unknown, Varying Lighting. In A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin, & L. Simon (Eds.), Scale Space and Variational Methods in Computer Vision (Vol. 12679, pp. 153–164). Springer International Publishing.

Relight. (n.d.). Retrieved 14 September 2023, from

See, A. R., Choco, J. A. G., & Chandramohan, K. (2022). Touch, Texture and Haptic Feedback: A Review on How We Feel the World around Us. Applied Sciences, 12(9), Article 9.

SensAble. (2017, January 16). Haptic Devices | 3D Systems.

Shen, V., Rae-Grant, T., Mullenbach, J., Harrison, C., & Shultz, C. (2023). Fluid Reality: High-Resolution, Untethered Haptic Gloves using Electroosmotic Pump Arrays. Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 1–20.

G. Spagnoletti, L. Meli, T. L. Baldi, G. Gioioso, C. Pacchierotti, & D. Prattichizzo (2018). Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments, In IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 2018 (pp. 691-692). Tuebingen/Reutlingen, Germany, 2018, doi: 10.1109/VR.2018.8446128.

Studio for Scientific Imaging and Archiving of Cultural Heritage | Munsell Color Science Lab | College of Science | RIT. (n.d.). Retrieved 14 September 2023, from

TAC7 webpage. (n.d.).

The PBR Guide—Part 2. (n.d.). Retrieved 26 March 2024, from

Trasforma le foto e crea grafiche di grande impatto | Adobe Photoshop. (n.d.). Retrieved 26 March 2024, from

Unreal engine. (n.d.). The most powerful real-time 3D creation tool. Unreal Engine. Retrieved 24 March 2024, from

Van Campenhout, L., Van Camp, M., & Vancoppenolle, W. (2020). Exploring Tangible VR as a Tool for Workplace Design. In Companion Proceedings of the 2020 Conference on Interactive Surfaces and Spaces, (pp. 33–36).

Vardar, Y., Wallraven, C., & Kuchenbecker, K. J. (2019). Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces. IEEE World Haptics Conference (WHC) 2019 (pp. 395–400). doi: 10.1109/WHC.2019.8816095

Vizoo—xTex Hardware Solutions for Scalable Material Digitization. (2022, March 3).

Walt Disney Animation Studios—Physically Based Shading At Disney. (n.d.). Walt Disney Animation Studios. Retrieved 26 March 2024, from

WEART haptic solutions | WEART. (n.d.). Retrieved 17 September 2023, from

Whitton, M., Lok, B., Insko, B., & Brooks, F. (n.d.). Integrating Real and Virtual Objects in Virtual Environments.

Winter & Company (Director). (2023, April 13). #Phygital: Digital prototyping made simple & efficient.

Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240.

Woodham, R. (1992). Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering, 19.

X-Rite. (n.d.). Search. X-Rite. Retrieved 26 March 2024, from

xTex website. (n.d.).,

Zhou, Y., Zhang, J., & Fang, F. (2021). Vergence-accommodation conflict in optical see-through display: Review and prospect. Results in Optics, 5, 100160.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2024 Michele Zannoni, Riccardo Foschi, Diego Pucci, Roberto Saponelli

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



SCIRES-IT, e-ISSN 2239-4303

Journal founded by Virginia Valzano