Behavioral Assessment and Optimization of Pedestrian Flood Evacuation in Historic Urban Settings: A Multiscale Simulation Approach to Risk Mitigation 
Abstract
Digital technologies can significantly support flood risk assessment and mitigation in Historic Urban Built Environments (HUBEs). Simulation tools can manage such complex disaster scenarios and provide useful analysis on human behaviors and evacuation strategies impact, especially when structural measures fail. This study proposes a multi-step and multi-scale tool, integrating hydrodynamic and evacuation simulations in flood-prone HUBEs, to (1) evaluate how excluding or including human behavior affect risk levels, and then (2) how emergency plan can be optimized, by testing different route choice strategies, to improve human safety. The tool combines microscopic and macroscopic models and is applied to typological HUBEs. Final comparisons with a consolidated model contribute to the tool verification, highlighting how the tool (and its single simulation components) can support decision makers in the analysis of multiple scenario and strategies conditions.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.2423/i22394303v15n2p215
References
Arrighi, C., Pregnolato, M., Dawson, R. J. J., & Castelli, F. (2019). Preparedness against mobility disruption by floods. Science of the Total Environment, 654, 1010–1022. https://doi.org/10.1016/j.scitotenv.2018.11.191
Bashir, T., Bergantino, A. S., Troiani, G., Henke, I., & Pagliara, F. (2025). Vulnerability and resilience analysis of road network: A systematic literature review using Bibliometrix. Sustainable Futures, 10. https://doi.org/10.1016/j.sftr.2025.101142
Bayram, V. (2016). Optimization models for large scale network evacuation planning and management: A literature review. Surveys in Operations Research and Management Science, 21(2), 63–84. https://doi.org/10.1016/j.sorms.2016.11.001
Bayram, V., & Yaman, H. (2018). Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach. Transportation Science, 52(2), 416–436. https://doi.org/10.1287/trsc.2017.0762
Bernardini, G., Romano, G., Soldini, L., & Quagliarini, E. (2021). How urban layout and pedestrian evacuation behaviours can influence flood risk assessment in riverine historic built environments. Sustainable Cities and Society, 70. https://doi.org/10.1016/j.scs.2021.102876
Beyki, S. M., Santiago, A., Laím, L., & Craveiro, H. D. (2023). Evacuation Simulation under Threat of Wildfire—An Overview of Research, Development, and Knowledge Gaps. Applied Sciences, 13(17), 9587. https://doi.org/10.3390/app13179587
Bianchi, C., & Salvati, P. (2024). Rapporto Periodico sul Rischio posto alla Popolazione italiana da Frane e inondazioni - Anno 2023. https://doi.org/10.30437/report2023
Bloomberg, M., & Burden, A. (2006). New York City Pedestrian Level of Service Study. New York, USA.
Borrmann, A., Kneidl, A., Köster, G., Ruzika, S., & Thiemann, M. (2012). Bidirectional coupling of macroscopic and microscopic pedestrian evacuation models. Safety Science, 50(8), 1695–1703. https://doi.org/10.1016/j.ssci.2011.12.021
Carrozzino, M., Piacentini, V., Tecchia, F., & Bergamasco, M. (2012). Interactive visualization of crowds for the rescue of cultural heritage in emergency situations. SCIRES-IT - SCIentific RESearch and Information Technology, 2(1), 133–148. https://doi.org/10.2423/i22394303v2n1p133
Chraibi, M., Tordeux, A., Schadschneider, A., & Seyfried, A. (2018). Modelling of Pedestrian and Evacuation Dynamics BT - Encyclopedia of Complexity and Systems Science (R. A. Meyers, Ed.). Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_705-1
Coutinho-Rodrigues, J., Tralhão, L., & Alçada-Almeida, L. (2012). Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans. Journal of Transport Geography, 22, 206–218. https://doi.org/10.1016/j.jtrangeo.2012.01.006
Cox, R. J., Shand, T. D., & Blacka, M. J. (2010). Australian Rainfall & Runoff revision project 10: Appropriate safety criteria for people. In Engineers Australia. https://doi.org/10.1038/103447b0
Dempe, S., Kalashnikov, V., Pérez-Valdés, G. A., & Kalashnykova, N. (2015). Bilevel Programming Problems. Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45827-3
De Padova, D., Mossa, M., Chiaia, G., Chimienti, G., Mastrototaro, F., & Adamo, M. (2024). Optimized environmental monitoring: innovative solutions to combat climate change. SCIRES-IT - SCIentific RESearch and Information Technology, 14(Special Issue), 43–52. https://doi.org/10.2423/i22394303v14Sp43
Dias, C., Rahman, N. A., & Zaiter, A. (2021). Evacuation under flooded conditions: Experimental investigation of the influence of water depth on walking behaviors. International Journal of Disaster Risk Reduction, 58, 102192. https://doi.org/10.1016/j.ijdrr.2021.102192
Evans, B., Lam, A., West, C., Ahmadian, R., Djordjević, S., Chen, A., & Pregnolato, M. (2024). A combined stability function to quantify flood risks to pedestrians and vehicle occupants. Science of The Total Environment, 908, 168237. https://doi.org/10.1016/j.scitotenv.2023.168237
Ferreira, T. M., & Santos, P. P. (2020). An Integrated Approach for Assessing Flood Risk in Historic City Centres. Water, 12(6), 1648. https://doi.org/10.3390/w12061648
Guo, P., Xia, J., Zhou, M., Falconer, R. A. ., Chen, Q., & Zhang, X. (2018). Selection of optimal escape routes in a flood-prone area based on 2D hydrodynamic modelling. Journal of Hydroinformatics, 20(6), 1310–1322. https://doi.org/10.2166/hydro.2018.161
Hamacher, H. W. W., & Tjandra, S. A. A. (2002). Mathematical modelling of evacuation problems: state of the art. In M. Schreckenberg & S. D. Sharma (Eds.), Pedestrian and Evacuation Dynamics 2002 (Vol. 24, pp. 227–266). Springer Verlag. https://doi.org/citeulike-article-id:6650160
Helbing, D., & Molnár, P. (1995). Social Force Model for Pedestrian Dynamics. Physical Review E, 51(5), 4282–4286. https://doi.org/10.1103/PHYSREVE.51.4282
HR Wallingford Ltd. (2021). Life Safety Model (LSM). LSM version 3.2 Technical reference guide - MCT0243.
Hsiao, C.-C., Sun, M.-C., Chen, A. Y., & Hsu, Y.-T. (2021). Location problems for shelter-in-place deployment: A case study of vertical evacuation upon dam-break floods. International Journal of Disaster Risk Reduction, 57. https://doi.org/10.1016/j.ijdrr.2021.102048
Huertas, J. A., Duque, D., Segura-Durán, E., Akhavan-Tabatabaei, R., & Medaglia, A. L. (2020). Evacuation dynamics: a modeling and visualization framework. OR Spectrum, 42(3), 661–691. https://doi.org/10.1007/s00291-019-00548-x
Jiang, Y., Chen, B., Li, X., & Ding, Z. (2020). Dynamic navigation field in the social force model for pedestrian evacuation. Applied Mathematical Modelling, 80, 815–826. https://doi.org/10.1016/j.apm.2019.10.016
Kazazi Darani, S., & Bashiri, M. (2018). A multi-district asset protection problem with time windows for disaster management. International Journal of Engineering, Transactions B: Applications, 31(11), 1929–1934. https://doi.org/10.5829/ije.2018.31.11b.17
Lee, Y.-H., Keum, H.-J., Han, K.-Y., & Hong, W.-H. (2021). A hierarchical flood shelter location model for walking evacuation planning. Environmental Hazards, 20(4), 432–455. https://doi.org/10.1080/17477891.2020.1840327
Li, Y., Hu, B., Zhang, D., Gong, J., Song, Y., & Sun, J. (2019). Flood evacuation simulations using cellular automata and multiagent systems -a human-environment relationship perspective. Int. Journal of Geographical Inf. Science, 33(11), 2241–2258. https://doi.org/10.1080/13658816.2019.1622015
Liu, X., & Lim, S. (2018). An agent-based evacuation model for the 2011 Brisbane City-scale riverine flood. Natural Hazards, 94(1), 53–70. https://doi.org/10.1007/s11069-018-3373-1
Lopes, A. C. R., Rezende, O. M., & Miguez, M. G. (2025). Urban resilience to floods in the context of the disaster risk management cycle: a literature review. Journal of Hydrology, 662. https://doi.org/10.1016/j.jhydrol.2025.133827
Lumbroso, D., & Davison, M. (2018). Use of an agent-based model and Monte Carlo analysis to estimate the effectiveness of emergency management interventions to reduce loss of life during extreme floods. Journal of Flood Risk Management, 11, S419–S433. https://doi.org/10.1111/jfr3.12230
Lumbroso, D., Davison, M., & Wetton, M. (2023). Development of an agent-based model to improve emergency planning for floods and dam failures. Journal of Hydroinformatics, 25(5), 1610–1628. https://doi.org/10.2166/hydro.2023.194
Ma, Y., Xu, W., Qin, L., & Zhao, X. (2019). Site Selection Models in Natural Disaster Shelters: A Review. Sustainability, 11(2), 399. https://doi.org/10.3390/su11020399
Marinelli, F., Pizzuti, A., Romano, G., Bernardini, G., & Quagliarini, E. (2025). An ILP formulation to optimize flood evacuation paths by minimizing pedestrian speed, length and effort. Retrieved September 24, 2025, from http://arxiv.org/abs/2504.12958
Mignot, E., Li, X., & Dewals, B. (2019). Experimental modelling of urban flooding: A review. Journal of Hydrology, 568, 334–342. https://doi.org/10.1016/j.jhydrol.2018.11.001
Musolino, G., Ahmadian, R., & Xia, J. (2022). Enhancing pedestrian evacuation routes during flood events. Natural Hazards. https://doi.org/10.1007/s11069-022-05251-9
Quagliarini, E., Bernardini, G., Romano, G., & D’Orazio, M. (2022). Simplified flood evacuation simulation in outdoor built environments. Preliminary comparison between setup-based generic software and custom simulator. Sustainable Cities and Society, 81, 103848. https://doi.org/10.1016/J.SCS.2022.103848
Ronchi, E. (2020). Developing and validating evacuation models for fire safety engineering. Fire Safety Journal, 103020. https://doi.org/10.1016/j.firesaf.2020.103020
Saaty, T. L. (1980). The analytic hierarchy process, MacGraw-Hill, New York International Book Company.
Saeed Osman, M., & Ram, B. (2013). Two-phase evacuation route planning approach using combined path networks for buildings and roads. Computers & Industrial Engineering, 65(2), 233–245. https://doi.org/10.1016/j.cie.2013.03.001
Spearpoint, M., Arnott, M., Xie, H., Gwynne, S., & Templeton, A. (2024). Comparative analysis of two evacuation simulation tools when applied to high-rise residential buildings. Safety Science, 175, 106515. https://doi.org/10.1016/j.ssci.2024.106515
UNDRR. (2024). Sendai Framework Terminology. Retrieved February 22, 2024, from https://www.undrr.org/drr-glossary/terminology
Zhu, Y., Li, H., Wang, Z., Li, Q., Dou, Z., Xie, W., Zhang, Z., Wang, R., Nie, W. (2022). Optimal Evacuation Route Planning of Urban Personnel at Different Risk Levels of Flood Disasters Based on the Improved 3D Dijkstra’s Algorithm. Sustainability (Switzerland), 14(16), 10250. https://doi.org/10.3390/su141610250
Zhu, Z., Zhou, L., Zhang, C., Lin, B., Cui, Y., & Che, M. (2018). Modeling of Macroscopic Building Evacuation Using IFC Data. ISPRS Int. Journal of Geo-Information, 7(8), 302. https://doi.org/10.3390/ijgi7080302
Zhuo, L., & Han, D. (2020). Agent-based modelling and flood risk management: A compendious literature review. Journal of Hydrology, 591, 125600. https://doi.org/10.1016/j.jhydrol.2020.125600
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Guido Romano, Gabriele Bernardini, Fabrizio Marinelli, Andrea Pizzuti, Marco D'Orazio, Enrico Quagliarini

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SCIRES-IT, e-ISSN 2239-4303
Journal founded by Virginia Valzano




