Articles

UAS, LiDAR, GeoSLAM for 3D Survey of Natural and Cultural Heritage


Abstract


This study applies an integrated methodology combining UAS photogrammetry, LIDAR, and SLAM laser scanning for the 3D survey of the Grotta Oscura quarries in Rome. A topographic network with GNSS RTK was established to ensure accurate georeferencing and alignment of heterogeneous datasets. Aerial surveys using drones captured high-resolution imagery and dense point clouds, while SLAM-based scanning documented underground environments. Data processing included orthophoto generation, dense 3D modeling, and point cloud integration. Software like Reality Capture, Autodesk Recap Pro, and GIS tools supported the analysis. The approach enabled detailed morphological assessment and virtual site navigation. Complex spatial relationships were modeled despite environmental constraints. This workflow demonstrates an effective strategy for surveying inaccessible heritage sites.

Keywords


UAS, LiDAR, geoSLAM, survey, cultural heritage

Full Text:

PDF


DOI: http://dx.doi.org/10.2423/i22394303v15n1p33

References


Achille C., Adami A., Chiarini S., Cremonesi S., Fassi F., Fregonese L., & Taffurelli L. (2015). UAV-based photogrammetry and integrated technologies for architectural applications - Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15(7), 15520-15539. https://doi.org/10.3390/s150715520.

Adami, A., Fregonese, L., Gallo, M., Helder, J., Pepe, M., & Treccani, D. (2019). Ultra light UAV systems for the metrical documentation of Cultural Heritage: applications for architecture and archaeology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (XLII-2/W17) 15–21. https://doi.org/10.5194/isprs-archives-XLII-2-W17-15-2019.

Adinolfi, O., Bonfanti, C., Mattioli, L., & Guardini, N. (2016). Strumenti e applicazioni con laser portatili I casi di FARO e GeoSLAM. GEOmedia, 19 (6). https://ojs.mediageo.it/index.php/GEOmedia/article/view/1282.

Bakuła, K., Lejzerowicz, A., Pilarska-Mazurek, M., Ostrowski, W., Górka, J., Biernat, P., Czernic, P., Załęgowski, K., Kleszczewska, K., Węzka, K., Gąsiewski, M., Dmowski, H., & Styś, N. (2022). Sensor integration and application of low-sized mobile mapping platform equipped with LIDAR, GPR and photogrammetric sensors. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (XLIII-B1-2022) 167–72. https://doi.org/10.5194/isprs-archives- XLIII-B1-2022-167-2022.

Barba, S., di Filippo, A. Ferreyra, C., & Limongiello, M. (2020). A pipeline for the integration of 3D data on aerophotogrammetric frameworks. The case study of Villa Rufolo. In S. Barba, S. Parrinello, M. Limongiello,

A. Dell’Amico (Eds.). D-SITE Drones - Systems of Information on culTural hEritage. For a spatial and social investigation (pp. 32-39). Pavia: Pavia University Press.

Beltramone, L., De Lucia, V., Ermini, A., Innocenti, M., Silvestri, D., Rindinella, A., Ronchitelli, A., Ricci, S., Boschin, F., & Salvini, R. (2024). Applying SLAM-Based LiDAR and UAS Technologies to Evaluate the Rock Slope Stability of the Grotta Paglicci Paleolithic Site (Italy). GeoHazards 2024, 5, 457-484. https://doi.org/10.3390/geohazards5020024.

Bertolini, S., Piemonte, A., Caroti, G., Bevilacqua, M.G., Capriuoli, F., Rinaldi, E., Santillo, D., & Muccilli, I. (2024). Integrated 3D Survey Methodologies and Digital Platforms for the Enhancement of Archaeological Data in the Digital Transition. SCIRES-IT - SCIentific RESearch and Information Technology, 14(2), 107-124. http://dx.doi.org/10.2423/i22394303v14n2p107

Coarelli, F. (2007). Rome and Environs: An Archaeological Guide. Berkeley, Los Angeles:University of California Press.

Colaceci, S., Chiavoni, E., & Cianci, M.G. (2022). UAVs and GIS models for landscape representation.

DISEGNARECON 15 (29), 1-14. https://doi.org/10.20365/disegnarecon.29.2022.10.

Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013.

Cowley, D.C. (ed.) (2010). Remote Sensing for Archeological Heritage Management. 11° EAC Heritage Management Symposium, Reykjavik, Iceland, 25-27 March 2010.

Elias, M., Isfort, S., Eltner, A., & Maas, H.-G. (2024). UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64. https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024.

Federman, A., Santana Quintero, M., Kretz, S., Gregg, J., Lengies, M., Ouimet, C., & Laliberte, J. (2017). UAV photogrammetric workflows: a best practice guideline, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (XLII-2/W5), 237-244. https://doi.org/10.5194/isprs-archives-XLII-2-W5- 237-2017.

Ingman, M., Virtanen, J.-P., Vaaja, M.T., & Hyyppä, H. A (2020). Comparison of Low-Cost Sensor Systems in Automatic Cloud-Based Indoor 3D Modeling. Remote Sens, 12 (2624), 1-20. https://doi.org/10.3390/rs12162624.

Luhmann, T., Robson, S., Kyle, S., & Boehm, J. (2020). Close-range Photogrammetry and 3D Imaging. Berlin, Boston: De Gruyter GmbH. https://doi.org/10.1515/9783110607253

Mediati, D., & Brandolino, R.G. (2024). Digital Surveying, Augmented Trekking and Valorisation Strategies for Inland Areas. The Grandi Pietre Valley. SCIRES-IT - SCIentific RESearch and Information Technology, 14(1), 79-96. http://dx.doi.org/10.2423/i22394303v14n1p79

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1-

Londra: Springer Nature. https://doi.org/10.1007/s12518-013-0120-x

Picchio, F, Parrinello, S. & Barba, S. (2022). Drones and Drawings - methods of data acquisition, management, and representation, DISEGNARECON, 15 (29), 1-7. https://doi.org/10.20365/disegnarecon.29.2022.ed

Remondino, F., & Campana, S. (2014). 3D Recording and Modelling in Archaeology and Cultural Heritage: Theory and Best Practices. Bicester: Archaeopress BAR.

Remondino, F., & Rizzi, A. (2010). Documentazione 3D basata sulla realtà di siti del patrimonio naturale e culturale: tecniche, problemi ed esempi. Appl. Geomat., 2, 85–100.

Rodríguez-Bulnes, J., Benavides López, J.A., Romero Pellitero, P., Martín Civantos, J.M., & Rouco Collazo, J. (2022). The documentation of archaeological heritage through aerial photogrammetry and UAS-based LiDAR: the case study of the Espique valley (La Peza, Granada, Spain). DISEGNARECON, 15 (29), 1-10. https://doi.org/10.20365/disegnarecon.29.2022.12.

Russo, M., Panarotto, F., Flenghi, G., Russo, V., & Pellegrinelli A. (2022a). Ultralight UAV for steep-hill archaeological 3D survey. DISEGNARECON, 15 (29), 1-17.

https://doi.org/10.20365/disegnarecon.29.2022.3.

Russo, M., & Russo, V. (2022b). Geometric analysis of a space grid structure by an integrated 3d survey approach. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2/W1-2022, 465–472, https://doi.org/10.5194/isprs-archives-XLVI 2-W1-2022-465-2022.

Scaioni, M. (2015). Modern Technologies for Landslide Monitoring and Prediction. Berlin: Springer. https://doi.org/10.1007/978-3-662-45931-7.

Sobura, S., Bacharz, K., & Granek, G. (2023). Analysis of two-option integration of unmanned aerial vehicle and terrestrial laser scanning data for historical architecture inventory. Geodesy and Cartography. 49 (2), 76–87. https://doi.org/10.3846/gac.2023.16990.

Warchoł, A., Karaś, T., & Antoń, M. (2023). Selected qualitative aspects of Lidar point clouds: GeoSLAM Zeb- Revo and Faro Focus 3D X130. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W3-2023, 205–212. https://doi.org/10.5194/isprs-archives-XLVIII 1-W3-2023-205-2023.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Maria Grazia Cianci, Stefano Botta, Daniele Calisi, Sara Colaceci, Vittoria Ghio, Andrea Gullotta, Michela Schiaroli

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

 

SCIRES-IT, e-ISSN 2239-4303

Journal founded by Virginia Valzano