Articles

Digital perspectives of ancient grape processing area with computational analysis: Çelbira


Abstract


This study adopts a holistic approach to documenting, analysing, and preserving the Çelbira Grape Processing Area, a significant part of Mardin’s heritage sites. The methodology of the study consists of four stages of literature review, fieldwork, flow analysis, and evaluation of the data obtained. A three-dimensional digital model of an area of approximately 1700 m² was produced using an iPad Pro LiDAR sensor, and comparative measurements taken on site achieved an accuracy level of less than 1 cm. The findings of the study revealed that the grape processing site was developed with a sophisticated engineering approach to adapt to the slope and terrain conditions. However, today, the neglected and unconserved condition of the channels, distilleries, and cisterns of the Çelbira indicates that the heritage is under the threat of extinction. The study emphasises that digital technologies are powerful tools for documenting, preserving, and analysing historical buildings


Keywords


Historical urban landscape; LIDAR; grape processing area; Çelbira

Full Text:

PDF


DOI: http://dx.doi.org/10.2423/i22394303v15n2p163

References


Adam, M. A., Saraf, N. M., Luh, L. C., Razali, M. H., & Hashim, M. A. M. (2024). The suitability of smartphone LiDAR for 3D building information modelling (BIM) applications. International Journal of Integrated Engineering, 16(8), 1-9.

Adamopoulos, E., & Rinaudo, F. (2020). UAS-based archaeological remote sensing: Review, meta-analysis and state-of-the-art. Drones, 4(3), 46.

Altun, S., Gunes, M. C., Şahin, Y. H., Mertan, A., Ünal, G., & Özkar, M. (2022). Symmetry and variance: Generative parametric modelling of historical brick wall patterns. In V. Viana, D. Nagy, J. Xavier, A. Neiva, M. Ginoulhiac, L. Mateus & P. Varela (Eds.), Symmetry: Art and Science (pp. 096-103) Brussels: International Symmetry Foundation.

Askar, C., & Sternberg, H. (2023). Use of smartphone LiDAR technology for low-cost 3D building documentation with iPhone 13 Pro: A comparative analysis of mobile scanning applications. Geomatics, 3(4), 563–579.

Atencio, E., Muñoz, A., Lozano, F., González-Arteaga, J., & Lozano-Galant, J. A. (2024). Calibration of iPad Pro LiDAR scanning parameters for the scanning of heritage structures using orthogonal arrays. Applied Sciences, 14(24), 11814.

Bandarin, F., & Van Oers, R. (2012). The historic urban landscape: managing heritage in an urban century. United Kingdom, UK: John Wiley & Sons.

Barnard, H., & Eerkens, J. W. (Eds.). (2007). Theory and practice of archaeological residue analysis. Oxford, UK: Archaeopress.

Bekar, İ., & Kutlu, İ. (2024). Critical analysis and digital documentation of the transformations of heritage buildings. VITRUVIO-International Journal of Architectural Technology and Sustainability, 9(1), 110–123.

Bekar, İ., Kutlu, İ., & Ergün, R. (2024). Importance performance analysis for sustainability of reused historical building: Mardin Sabanci City Museum and art gallery. Open House International, 49(3), 550-573.

Bennett, A., & Elman, C. (2006). Complex causal relations and case study methods: The example of path dependence. Political analysis, 14(3), 250-267.

Bulnes, J. R., Román Punzón, J. M., & Martín Civantos, J. M. (2025). Remote sensing analysis and LiDAR experimenting in the Espique Valley (La Peza, Granada, Spain). Archaeological Prospection. 32(April/June), 395-407

Campanaro, D. M., Landeschi, G., Dell’Unto, N., & Touati, A. M. L. (2016). 3D GIS for cultural heritage restoration: A ‘white box’workflow. Journal of Cultural Heritage, 18, 321-332.

Cianci, M. G., Botta, S., Calisi, D., Colaceci, S., Ghio, V., Gullotta, A., & Schiaroli, M. (2025). UAS, LiDAR, GeoSLAM for 3D Survey of Natural and Cultural Heritage. SCIRES-IT, 15(1), 33-46. http://dx.doi.org/10.2423/i22394303v15n1p33

Colman, T. (2008). Wine politics: How governments, environmentalists, mobsters, and critics influence the wines we drink. Oakland, CA: University of California Press.

Coppens, A., Mens, T., & Gallas, M. A. (2019). Parametric modeling within immersive environments: building a bridge between existing tools and virtual reality headsets. In A. Kepczynska-Walczak & S. Białkowski (Eds.), Proceedings of eCAADe (pp. 721-726). Lodz, Poland: Lodz University of Technology.

Corti, C. (2018). The knowledge of viticulture in Hittite Anatolia: An interdisciplinary approach. Die Welt des Orients, 48(2), 285-298.

Cuperschmid, A. R. M., Neves de Oliveira, G., & Froner, Y. A. (2024). Exploring the use of LiDAR in smartphones: Documenting the frontispiece of Saint Francis of Assisi Church in Ouro Preto, Brazil. International Journal of Architectural Heritage, In Press, 1–18.

CyArk. Retrieved from https://www.cyark.org/

Dasari, S. K., Fantuzzi, N., Trovalusci, P., & Panei, R. (2022). Computational approach for form-finding optimal design. Architecture, Structures and Construction, 2(3), 323-333.

Di Stefano, F., Chiappini, S., Gorreja, A., Balestra, M., & Pierdicca, R. (2021). Mobile 3D scan LiDAR: A literature review. Geomatics, Natural Hazards and Risk, 12(1), 2387-2429.

Díaz-Vilariño, L., Tran, H., Frías, E., Balado, J., & Khoshelham, K. (2022). 3D mapping of indoor and outdoor environments using Apple smart devices. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 303-308.

Do, T. L. P., Sanhae, K., Hwang, L., & Lee, S. (2024). Real-time spatial mapping in architectural visualization: A comparison among mixed reality devices. Sensors, 24(14), 4727.

Dodd, E. (2022). The archaeology of wine production in Roman and pre-Roman Italy. American Journal of Archaeology, 126(3), 443-480.

Dore, C., & Murphy, M. (2017). Current state of the art historic building information modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 185-192.

Esen, S. Y. (2014). Risk assessment of archaeological heritage at territorial scale the case of İzmir Metropolitan Area (Doctoral dissertation), Middle East Technical University, Türkiye.

European Union. Climate, Heritage and Environments of Reefs, Islands, and Headlands. Retrieved from https://cherishproject.eu/en/

Evens, T., & Hauttekeete, L. (2011). Challenges of digital preservation for cultural heritage institutions. Journal of Librarianship and Information Science, 43(3), 157–165.

Franqel, R. (1999). Wine and oil production in antiquity in Israel and other Mediterranean countries. Sheffield: Sheffield Academic Press.

Gentili, F., & Madonna, S. (2024). Photogrammetry from UAV and low-cost LiDAR for sinkhole hazard mitigation in urban areas: Applications and evaluations. Geographies, 4(2), 343–362.

Gomes, L., Bellon, O. R. P., & Silva, L. (2014). 3D reconstruction methods for digital preservation of cultural heritage: A survey. Pattern Recognition Letters, 50, 3–14.

Goodchild, M. F., Yuan, M., & Cova, T. J. (2007). Towards a general theory of geographic representation in GIS. International journal of geographical information science, 21(3), 239-260.

Goor, A. (1966). The history of the grape-vine in the Holy Land. Economic Botany, 20(1), 46-64.

Gorny, R. (1996). Viticulture and Ancient Anatolia, u: The Origins and Ancient History of Wine. In P. E. McGovern, S. J. Fleming, S. H. Katz (Eds.), The Origins and Ancient History of Wine (pp. 46). Oxfordshire: Routledge.

Harutyunyan, M., & Malfeito-Ferreira, M. (2022a). Historical and heritage sustainability for the revival of ancient wine-making techniques and wine styles. Beverages, 8(1), 10.

Harutyunyan, M., & Malfeito-Ferreira, M. (2022b). The rise of wine among ancient civilizations across the Mediterranean basin. Heritage, 5(2), 788-812.

Hayreter, I. A., Özer, D. G., & Cemrek, H. A. (2024). Enhancing cultural heritage digitalization and visitor engagement through lidar scanning and gamification. In N. Gardner, C. M. Herr, L. Wang, H. Toshiki & S. A. Khan (Eds.), Proceedings of the 29th International Conference of the Association for ComputerAided Architectural Design Research in Asia - CAADRIA (pp. 283-292). Singapore: Singapore University of Technology and Design.

Hou, J., Hübner, P., Schmidt, J., & Iwaszczuk, D. (2024). Indoor mapping with entertainment devices: Evaluating the impact of different mapping strategies for Microsoft HoloLens 2 and Apple iPhone 14 Pro. Sensors, 24(4), 1062.

Jadresin Milic, R., McPherson, P., McConchie, G., Reutlinger, T., & Singh, S. (2022). Architectural history and sustainable architectural heritage education: Digitalisation of heritage in New Zealand. Sustainability, 14(24), 16432.

Janicka, J., & Błaszczak-Bąk, W. (2025). Various scenarios of measurements using a smartphone with a LiDAR sensor in the context of integration with the TLS point cloud. Reports on Geodesy and Geoinformatics, 119, 14–22.

Kędziorski, P., Jagoda, M., Tysiąc, P., & Katzer, J. (2024). An example of using low-cost LiDAR technology for 3D modeling and assessment of degradation of heritage structures and buildings. Materials, 17(22), 5445.

Labbé, M., & Michaud, F. (2019). RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation. Journal of Field Robotics, 36(2), 416-446.

Lantos, S., Bar-Oz, G., & Gambash, G. (2020). Wine from the desert: Late-antique negev viniculture and the famous gaza wine. Near Eastern Archaeology, 83(1), 56-64.

Leon, I., Pérez, J. J., & Senderos, M. (2020). Advanced techniques for fast and accurate heritage digitisation in multiple case studies. Sustainability, 12(15), 6068.

Li, Y., Zhao, L., Chen, Y., Zhang, N., Fan, H., & Zhang, Z. (2023). 3D LiDAR and multi-technology collaboration for preservation of built heritage in China: A review. International Journal of Applied Earth Observation and Geoinformation, 116, 103156.

Luetzenburg, G., Kroon, A., & Bjørk, A. A. (2021). Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Scientific Reports, 11(1), 1-9.

Luschi, C. M. R., Vezzi, A., & Niccolai, F. (2025). 3D Collecting Data, the Interdisciplinary Platform. SCIRES-IT, 15(1), 177-192.

Mardin Metropolitan Municipality (2021). Artuklu alan yönetim planı. Retrieved from https://kvmgm.ktb.gov.tr/Eklenti/100706,uyp---artuklu-yonetim-planipdf.pdf?0

Marzano, A. (2013). Agricultural production in the hinterland of Rome: Wine and olive oil. In A. Bowman, A. Wilson (Eds.), The Roman agricultural economy: Organization, investment, and production (pp. 85-106). Oxford: Oxford University Press.

Mêda, P., Calvetti, D., & Sousa, H. (2023). Exploring the potential of iPad-LiDAR technology for building renovation diagnosis: a case study. Buildings, 13(2), 456.

McGovern, P. E. (2013). Ancient wine: the search for the origins of viniculture. Princeton: Princeton University Press.

Mohsin, A. A., & Khalaf, Y. H. (2024). Cultural heritage conservation using portable laser devices embedded in mobile phones. Association of Arab Universities Journal of Engineering Sciences, 31(3), 28-36.

Morse, C., Martinez-Parachini, E., Richardson, P., Wynter, C., & Cerone, J. (2020). Interactive design to fabrication, immersive visualization and automation in construction. Construction Robotics, 4(3), 163-173.

Murtiyoso, A., Grussenmeyer, P., Landes, T., & Macher, H. (2021). First assessments into the use of commercial-grade solid state lidar for low cost heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43(B2–2021), 599–604.

Öcalan, T., Arıcan, D., Araei, R. M., Gül, C., & Tunalıoğlu, N. (2024). Accuracy analysis of 3D point clouds obtained from camera and LiDAR sensors of smartphones and tablets. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(3), 1771–1781.

Powell, M. A. (1996) Wine and the vine in Ancient Mesopotamia: The cuneiform evidence. In P. E. McGovern, S. J. Fleming, S. H. Katz (Eds.), The Origins and Ancient History of Wine, Food and Nutrition in History and Anthropology (pp. 97–122). London: Routledge.

Remondino, F., & Rizzi, A. (2010). Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Applied Geomatics, 2, 85-100.

Remondino, F. (2011). Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote sensing, 3(6), 1104-1138.

Seligman, J., Haddad, E., & Nadav-Ziv, L. (2024). Yavne and the industrial production of Gaza and Ashqelon wines. Levant, 56(1), 129-152.

Smrčková, D., Chromčák, J., Ižvoltová, J., & Sásik, R. (2024). Usage of a conventional device with LiDAR implementation for mesh model creation. Buildings, 14(5), 1279.

Storeide, M. S. B., George, S., Sole, A. S., & Hardeberg, J. Y. (2023). Standardization of digitized heritage: a review of implementations of 3D in cultural heritage. Heritage Science, 11, 249.

Symon, G. E. & Cassell, C. E. (1998). Qualitative methods and analysis in organizational research: A practical guide. New York: Sage Publications Ltd.

Tchernia, A. (1983). Italian wine in Gaul at the end of the Republic. In P. Garnsey, K. Hopkins, C. R. Whittaker (Eds.), Trade in the ancient economy (pp. 87-104). London: Chatto & Windus.

Tedeschi, A. (2011). Parametric architecture with Grasshopper: primer. Paris: Le Penseur.

Teo, T. A., & Yang, C. C. (2023). Evaluating the accuracy and quality of an iPad Pro's built-in LiDAR for 3D indoor mapping. Developments in the Built Environment, 14, 100169.

Teppati Losè, L., Spreafico, A., Chiabrando, F., & Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17), 4157.

Terral, J. F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I., ... & This, P. (2010). Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany, 105(3), 443-455.

This, P., Lacombe, T., & Thomas, M. R. (2006). Historical origins and genetic diversity of wine grapes. TRENDS in Genetics, 22(9), 511-519.

Unwin, T. (1991). Wine and the vine: A historical geography of viticulture and the wine trade (1st ed.). London: Routledge.

Wang, X., Singh, A., Pervysheva, Y., Lamatungga, K. E., Murtinová, V., Mukarram, M., ... & Mokroš, M. (2021). Evaluation of ipad pro 2020 lidar for estimating tree diameters in urban forest. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8, 105-110.

Vacca, G. (2023). 3D Survey with Apple LiDAR Sensor—test and assessment for architectural and cultural heritage. Heritage, 6(2), 1476-1501.

Vinci, G., Vanzani, F., Fontana, A., & Campana, S. (2025). LiDAR applications in archaeology: A systematic review. Archaeological Prospection, 32(1), 81-101.

Voûte, R. L., Prins, H., & Smit, B. P. (2023). Comparison of low-cost techniques for digital cultural heritage preservation of an original Egyptian temple. AGILE: GIScience Series, 4, 49.

Zhang, N., & Lan, X. (2024). Everyday-carry equipment mapping: A portable and low-cost method for 3D digital documentation of architectural heritage by integrated iPhone and microdrone. Buildings, 15(1), 89.

Zhang, C., Chen, J., Li, P., Han, S., & Xu, J. (2024). Integrated high-precision real scene 3D modeling of karst cave landscape based on laser scanning and photogrammetry. Scientific Reports, 14(1), 20485.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Izzettin Kutlu, Deryanur Şimşek

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

 

SCIRES-IT, e-ISSN 2239-4303

Journal founded by Virginia Valzano