From Studio to Streaming: A Practical Framework for Binaural Music Production Using “Mantra” by Estados Alterados 
Abstract
This artistic research article documents the end-to-end production of a fixed-binaural remix of “Mantra” by Estados Alterados. We designed a reproducible, hybrid workflow—dummy-head re-amping, HRTF-based spatial synthesis, and conventional multitrack mixing—to translate narrative goals (Reality ↔ Beyond) into perceptible spatial events for headphone listening. Materials included original stems, time-charts and spatial diagrams; decisions emphasized axial anchors with selective periphery, preserving timbral identity while enhancing externalization and presence. Validation covered multi-headphone listening, stereo fold-down checks and streaming-target mastering. Deliverables comprise the published track and a browser-based interactive interface that supports knowledge transfer between academia and industry; computational mood/timbre profiling with Essentia/MusiCNN complements the qualitative analysis.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.2423/i22394303v15n2p233
References
Alonso Cardona-Cano, C., Calle, J. S., & López Díez, J. (2024). Quantifying the impact of head-tracked spatial audio on common user auditory experiences using facial micromovements (Paper 269). Paper presented at the 152nd Audio Engineering Society Convention. New York, United States. Retrieved from https://aes2.org/publications/elibrary-page/?id=22727
Alonso-Jiménez, P., Bogdanov, D., Pons, J., & Serra, X. (2020). TensorFlow audio models in Essentia. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 266–270). Barcelona, Spain: IEEE. https://doi.org/10.1109/ICASSP40776.2020.9054688
Arango-Lopera, C. A., Escobar-Sierra, M., & Cardona-Cano, C. A. (2024). Sonority and popularity of reggaeton: From the ghetto to the mass. SCIRES-IT - SCIentific RESearch and Information Technology, 14(2), 169–184. https://doi.org/10.2423/i22394303v14n2p169
Begault, D. R. (1994). 3-D sound for virtual reality and multimedia. NASA Ames Research Center.
Best, V., Kopčo, N., & Shinn-Cunningham, B. (2020). Sound externalization: A review of recent research. Trends in Hearing, 24, 1–14. https://doi.org/10.1177/2331216520948390
Blauert, J. (1997). Spatial hearing:The psychophysics of human sound localization (Rev. ed.). Cambridge, MA: MIT Press.
Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J., Zapata, J., & Serra, X. (2013). Essentia: An open-source library for audio analysis and music information retrieval. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013) (pp. 493–498). International Society for Music Information Retrieval.
Carrozzino, M., Angeletaki, A., Evangelista, C., Lorenzini, C., Tecchia, F., & Bergamasco, M. (2013). Virtual technologies to enable novel methods of access to library archives. SCIRES-IT - SCIentific RESearch and Information Technology, 3(1), 25–34. https://doi.org/10.2423/i22394303v3n1p25
Casales, A. (2024). Aproximaciones a la inmersión y su percepción auditiva. Calle 14: Revista de Investigación en el Campo del Arte, 19(36), 288–305. https://doi.org/10.14483/21450706.20572
Collins, K., & Dockwray, R. (2018). Experimental sound mixing for the well, a short film made for tablets. Leonardo Music Journal, 28, 65–71. https://doi.org/10.1162/lmj_a_00996
De Gregori Astrici, A. (2018). Técnicas de diseño sonoro para narrativas inmersivas en cine y realidad virtual (Tesis doctoral, Universidad Complutense de Madrid). Repositorio Institucional UCM. https://eprints.ucm.es/id/eprint/50052
Dewey, C., Moore, A., & Lee, H. (2024). Practitioners’ perspectives on spatial audio: Insights into Dolby Atmos and binaural mixes in popular music. Journal of the Audio Engineering Society, 72(7–8), 504–516. https://doi.org/10.17743/jaes.2022.0153
Estados Alterados. (2018). Lumisphera [Album]. Estados Alterados. Retrieved from https://open.spotify.com/intl-es/album/4n5NrxwtF4QrnOJhynbGOI?si=qi-oTyoOSX6Wx7FfioHWMQ
Estados Alterados. (2022). Binaural [Website]. Retrieved from https://binaural.estadosalterados.net/
Estados Alterados. (2023). Mantra binaural – experiencia inmersiva [Song]. Estados Alterados. Retrieved from https://open.spotify.com/album/1TLOx0TYyfiIaNKt91D5mR?si=SI4PACmJTGenQnz-qKIhvA
Fantini, D., Presti, G., Geronazzo, M., Bona, R., Privitera, A. G., & Avanzini, F. (2023). Co-immersion in audio-augmented virtuality: The case study of a static and approximated late-reverberation algorithm. IEEE
(2025), n. 2 From Studio to Streaming: A Practical Framework for Binaural Music Production …
49
Transactions on Visualization and Computer Graphics, 29(11), 4472–4482. https://doi.org/10.1109/TVCG.2023.3320213
Fontana, S., Farina, A., & Grenier, Y. (2007). Binaural for popular music: A case study. In Proceedings of the 13th International Conference on Auditory Display (ICAD 2007) (pp. 85–90). Montréal, Canada.
Gerzon, M. A. (1973). Periphony: With-height sound reproduction. Journal of the Audio Engineering Society, 21(1), 2–10.
Grand View Research. (2022). 3D audio market size, share & trends analysis report, 2022–2030. Grand View Research. Retrieved from https://www.grandviewresearch.com/industry-analysis/3d-audio-market
Grundhuber, P., Lovedee-Turner, M., & Habets, E. A. P. (2024). NBU: Neural binaural upmixing of stereo content. In Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) (pp. 404–411). Guildford, Surrey, UK. Retrieved from https://www.dafx.de/paper-archive/2024/papers/DAFx24_paper_36.pdf
Howie, W., Kamekawa, T., & Morinaga, M. (2023). Case Studies in Music Production for Advanced 3D Audio Reproduction with Bottom Channels (1.3). Zenodo. https://doi.org/10.5281/zenodo.7710002
Kelly, J., Woszczyk, W., & King, R. (2020, October). Are you there? A literature review of presence for immersive music reproduction [Paper presentation]. 149th Audio Engineering Society Convention, Online.
Kerins, M. (2011). Beyond Dolby (Stereo): Cinema in the Digital Sound Age. Bloomington, IN: Indiana University Press.
Kopp, B. (2022). What is immersive audio?: How engineers, artists & industry are changing the state of sound. GRAMMY.com. https://www.grammy.com/news/what-is-immersive-audio-industry-explainer-dolby-atmos
López, X. X. (2012). Algunas ideas sobre la inmersión sonora [Blog post]. Un Ruido Secreto. Retrieved from https://www.unruidosecreto.net/algunas-ideas-sobre-la-inmersion-sonora/
López, M., Kearney, G., & Hofstädter, K. (2022). Seeing films through sound: Sound design, spatial audio, and accessibility for visually impaired audiences. British Journal of Visual Impairment, 40(2), 117–144. https://doi.org/10.1177/0264619620935935
Małecki, P., Piotrowska, M., Sochaczewska, K., & Piotrowski, S. (2020). Electronic music production in ambisonics—Case study. Journal of the Audio Engineering Society, 68(1/2), 87–94. https://doi.org/10.17743/jaes.2019.0048
Michael, K. (2024). Towards a taxonomy for immersive music performance. Music & Practice, 11. https://doi.org/10.32063/1107
Møller, H. (1992). Fundamentals of binaural technology. Applied Acoustics, 36(3-4), 171-218. https://doi.org/10.1016/0003-682X(92)90046-T
Paik, S., Han, J., Lee, T., & Lee, K. (2024). Case study on high order ambisonics music production: Music and technology within an ambisonics framework using Korean traditional instruments. In Proceedings of the AES 5th International Conference on Audio for Virtual and Augmented Reality (AVAR) (2024, August 19–21). DigiPen Institute of Technology, Redmond, Washington, USA.
Pons, J., & Serra, X. (2019). musicnn: Pre-trained convolutional neural networks for music audio tagging. arXiv. https://doi.org/10.48550/arXiv.1909.06654
Python Software Foundation. (2023). Python (Version 3.11) [Computer software]. https://www.python.org/
(2025), n. 2 C. A. Cardona-Cano
50
Reardon, G., Faller, C., & Frank, A. (2018, August 20-22). Evaluation of binaural renderers: Externalization, front/back and up/down confusions [Conference paper]. AES International Conference on Audio for Virtual and Augmented Reality, Redmond, WA, United States.
Roginska, A., & Geluso, P. (Eds.). (2017). Immersive sound: The art and science of binaural and multi-channel audio. New York, NY: Routledge.
Rumsey, F. (2021). Whose immersive audio? Technology, media, and markets. Journal of the Audio Engineering Society, 69(1/2), 142-148.
Singleton, T. (2021). Apple Music's spatial audio is an opportunity for producers, but challenges remain. Billboard. Retrieved from https://www.billboard.com/pro/apple-music-spatial-audio-dolby-atmos-producers-challenges/
Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 6(6), 603–616. https://doi.org/10.1162/pres.1997.6.6.603
Sun, L., Zhong, X., & Yost, W. A. (2015). Dynamic binaural sound source localization with interaural time difference cues: Artificial listeners [Conference abstract]. The Journal of the Acoustical Society of America, 137(4), 2226.
Warp, R., Zhu, M., Kiprijanovska, I., Wiesler, J., Stafford, S., & Mavridou, I. (2022). Moved by sound: How head-tracked spatial audio affects autonomic emotional state and immersion-driven auditory orienting response in VR environments. Paper presented at 152nd Audio Engineering Society (AES). https://www.aes.org/e-lib/browse.cfm?elib=21703.
Wingstedt, J., Brändström, S., & Berg, J. (2010). Narrative music, visuals and meaning in film. Visual Communication, 9(2), 193–210. https://doi.org/10.1177/1470357210369886
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 César Alonso Cardona Cano

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SCIRES-IT, e-ISSN 2239-4303
Journal founded by Virginia Valzano




